BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35634722)

  • 1. Plasma CXCL9 and CXCL10 at allograft injury predict chronic lung allograft dysfunction.
    Shino MY; Todd JL; Neely ML; Kirchner J; Frankel CW; Snyder LD; Pavlisko EN; Fishbein GA; Schaenman JM; Mason K; Kesler K; Martinu T; Singer LG; Tsuang W; Budev M; Shah PD; Reynolds JM; Williams N; Robien MA; Palmer SM; Weigt SS; Belperio JA
    Am J Transplant; 2022 Sep; 22(9):2169-2179. PubMed ID: 35634722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between BAL CXCR3 chemokines and lung allograft histopathologies: A multicenter study.
    Shino MY; Li N; Todd JL; Neely ML; Kirchner J; Kopetskie H; Sever ML; Frankel CW; Snyder LD; Pavlisko EN; Martinu T; Singer LG; Tsuang W; Budev M; Shah PD; Reynolds JM; Williams N; Robien MA; Palmer SM; Sam Weigt S; Belperio JA
    Am J Transplant; 2021 Oct; 21(10):3401-3410. PubMed ID: 33840162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Prognostic Importance of Bronchoalveolar Lavage Fluid CXCL9 During Minimal Acute Rejection on the Risk of Chronic Lung Allograft Dysfunction.
    Shino MY; Weigt SS; Li N; Derhovanessian A; Sayah DM; Saggar R; Huynh RH; Gregson AL; Ardehali A; Ross DJ; Lynch JP; Elashoff RM; Belperio JA
    Am J Transplant; 2018 Jan; 18(1):136-144. PubMed ID: 28637080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The allograft injury marker CXCL9 determines prognosis of anti-HLA antibodies after lung transplantation.
    Shino MY; Zhang Q; Li N; Derhovanessian A; Ramsey A; Saggar R; Britton IN; Amubieya OO; Lari SM; Hickey M; Reed EF; Noble PW; Stripp BR; Fishbein GA; Lynch JP; Ardehali A; Sayah DM; Weigt SS; Belperio JA
    Am J Transplant; 2022 Feb; 22(2):565-573. PubMed ID: 34464505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CXCR3 ligands are associated with the continuum of diffuse alveolar damage to chronic lung allograft dysfunction.
    Shino MY; Weigt SS; Li N; Palchevskiy V; Derhovanessian A; Saggar R; Sayah DM; Gregson AL; Fishbein MC; Ardehali A; Ross DJ; Lynch JP; Elashoff RM; Belperio JA
    Am J Respir Crit Care Med; 2013 Nov; 188(9):1117-25. PubMed ID: 24063316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The prognostic importance of CXCR3 chemokine during organizing pneumonia on the risk of chronic lung allograft dysfunction after lung transplantation.
    Shino MY; Weigt SS; Li N; Palchevskiy V; Derhovanessian A; Saggar R; Sayah DM; Huynh RH; Gregson AL; Fishbein MC; Ardehali A; Ross DJ; Lynch JP; Elashoff RM; Belperio JA
    PLoS One; 2017; 12(7):e0180281. PubMed ID: 28686641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Allograft Injury Time of Onset on the Development of Chronic Lung Allograft Dysfunction After Lung Transplantation.
    Shino MY; Weigt SS; Li N; Derhovanessian A; Sayah DM; Huynh RH; Saggar R; Gregson AL; Ardehali A; Ross DJ; Lynch JP; Elashoff RM; Belperio JA
    Am J Transplant; 2017 May; 17(5):1294-1303. PubMed ID: 27676455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection.
    Belperio JA; Keane MP; Burdick MD; Lynch JP; Zisman DA; Xue YY; Li K; Ardehali A; Ross DJ; Strieter RM
    J Immunol; 2003 Nov; 171(9):4844-52. PubMed ID: 14568964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cumulative exposure to gamma interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant.
    Neujahr DC; Perez SD; Mohammed A; Ulukpo O; Lawrence EC; Fernandez F; Pickens A; Force SD; Song M; Larsen CP; Kirk AD
    Am J Transplant; 2012 Feb; 12(2):438-46. PubMed ID: 22151926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bronchoalveolar lavage cytokine-based risk stratification of minimal acute rejection in clinically stable lung transplant recipients.
    Levy L; Huszti E; Ahmed M; Ghany R; Hunter S; Moshkelgosha S; Zhang CYK; Boonstra K; Klement W; Tikkanen J; Singer LG; Keshavjee S; Juvet S; Martinu T
    J Heart Lung Transplant; 2021 Dec; 40(12):1540-1549. PubMed ID: 34215500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammation on bronchoalveolar lavage cytology is associated with decreased chronic lung allograft dysfunction-free survival.
    Greenland NY; Deiter F; Calabrese DR; Hays SR; Kukreja J; Leard LE; Kolaitis NA; Golden JA; Singer JP; Greenland JR
    Clin Transplant; 2022 Jun; 36(6):e14639. PubMed ID: 35246990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of donor-derived-cell-free DNA as a marker of early allograft injury in primary graft dysfunction (PGD) to predict the risk of chronic lung allograft dysfunction (CLAD).
    Keller M; Bush E; Diamond JM; Shah P; Matthew J; Brown AW; Sun J; Timofte I; Kong H; Tunc I; Luikart H; Iacono A; Nathan SD; Khush KK; Orens J; Jang M; Agbor-Enoh S
    J Heart Lung Transplant; 2021 Jun; 40(6):488-493. PubMed ID: 33814284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BAL Fluid Eosinophilia Associates With Chronic Lung Allograft Dysfunction Risk: A Multicenter Study.
    Todd JL; Weber JM; Kelly FL; Neely ML; Mulder H; Frankel CW; Nagler A; McCrae C; Newbold P; Kreindler J; Palmer SM
    Chest; 2023 Sep; 164(3):670-681. PubMed ID: 37003354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of CXCL9 and CXCL10 as circulating biomarkers of human cardiac allograft rejection.
    Karason K; Jernås M; Hägg DA; Svensson PA
    BMC Cardiovasc Disord; 2006 Jun; 6():29. PubMed ID: 16780603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Free DNA and CXCL10 Derived from Bronchoalveolar Lavage Predict Lung Transplant Survival.
    Yang JYC; Verleden SE; Zarinsefat A; Vanaudenaerde BM; Vos R; Verleden GM; Sarwal RD; Sigdel TK; Liberto JM; Damm I; Watson D; Sarwal MM
    J Clin Med; 2019 Feb; 8(2):. PubMed ID: 30781765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Allograft CXCL9 during Respiratory Infection on the Risk of Chronic Lung Allograft Dysfunction.
    Shino MY; DerHovanessian A; Sayah DM; Saggar R; Ying Xue Y; Ardehali A; Stripp BR; Ross DJ; Lynch JP; Elashoff RM; Weigt SS; Belperio JA
    OBM Transplant; 2018; 2(4):. PubMed ID: 31414076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T Cells Promote Bronchial Epithelial Cell Secretion of Matrix Metalloproteinase-9 via a C-C Chemokine Receptor Type 2 Pathway: Implications for Chronic Lung Allograft Dysfunction.
    Pain M; Royer PJ; Loy J; Girardeau A; Tissot A; Lacoste P; Roux A; Reynaud-Gaubert M; Kessler R; Mussot S; Dromer C; Brugière O; Mornex JF; Guillemain R; Dahan M; Knoop C; Botturi K; Pison C; Danger R; Brouard S; Magnan A;
    Am J Transplant; 2017 Jun; 17(6):1502-1514. PubMed ID: 27982503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The common rejection module in chronic rejection post lung transplantation.
    Sacreas A; Yang JYC; Vanaudenaerde BM; Sigdel TK; Liberto JM; Damm I; Verleden GM; Vos R; Verleden SE; Sarwal MM
    PLoS One; 2018; 13(10):e0205107. PubMed ID: 30289917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher Molecular Injury at Diagnosis of Acute Cellular Rejection Increases the Risk of Lung Allograft Failure: A Clinical Trial.
    Keller MB; Tian X; Jang MK; Meda R; Charya A; Berry GJ; Marboe CC; Kong H; Ponor IL; Aryal S; Orens JB; Shah PD; Nathan SD; Agbor-Enoh S
    Am J Respir Crit Care Med; 2024 May; 209(10):1238-1245. PubMed ID: 38190701
    [No Abstract]   [Full Text] [Related]  

  • 20. Emerging biomarkers in chronic lung allograft dysfunction.
    Shtraichman O; Diamond JM
    Expert Rev Mol Diagn; 2020 May; 20(5):467-475. PubMed ID: 32133875
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.