BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 35634867)

  • 21. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems.
    Vithani K; Goyanes A; Jannin V; Basit AW; Gaisford S; Boyd BJ
    Pharm Res; 2018 Nov; 36(1):4. PubMed ID: 30406349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Printing of Textiles: Potential Roadmap to Printing with Fibers.
    Chatterjee K; Ghosh TK
    Adv Mater; 2020 Jan; 32(4):e1902086. PubMed ID: 31788860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Main Clinical Use of Additive Manufacturing (Three-Dimensional Printing) in Finland Restricted to the Head and Neck Area in 2016-2017.
    Pettersson ABV; Salmi M; Vallittu P; Serlo W; Tuomi J; Mäkitie AA
    Scand J Surg; 2020 Jun; 109(2):166-173. PubMed ID: 30991900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Additive Manufacturing in Orthopedics: A Review.
    Zhao Y; Wang Z; Zhao J; Hussain M; Wang M
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1367-1380. PubMed ID: 35266709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perspectives of 3D printing technology in orthopaedic surgery.
    Zamborsky R; Kilian M; Jacko P; Bernadic M; Hudak R
    Bratisl Lek Listy; 2019; 120(7):498-504. PubMed ID: 31602984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printing Materials and Technologies for Orthopaedic Applications.
    Kelly C; Adams SB
    J Orthop Trauma; 2024 Apr; 38(4S):S9-S12. PubMed ID: 38502597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in 3D printing of biodegradable metals for orthopaedic applications.
    Liang W; Zhou C; Zhang H; Bai J; Jiang B; Jiang C; Ming W; Zhang H; Long H; Huang X; Zhao J
    J Biol Eng; 2023 Aug; 17(1):56. PubMed ID: 37644461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional Technologies in Orthopedics.
    Papagelopoulos PJ; Savvidou OD; Koutsouradis P; Chloros GD; Bolia IK; Sakellariou VI; Kontogeorgakos VA; Mavrodontis II; Mavrogenis AF; Diamantopoulos P
    Orthopedics; 2018 Jan; 41(1):12-20. PubMed ID: 29401368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications.
    Arif ZU; Khalid MY; Noroozi R; Sadeghianmaryan A; Jalalvand M; Hossain M
    Int J Biol Macromol; 2022 Oct; 218():930-968. PubMed ID: 35896130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3-dimensional printing for anterior cervical surgery: a review.
    Choy WJ; Parr WCH; Phan K; Walsh WR; Mobbs RJ
    J Spine Surg; 2018 Dec; 4(4):757-769. PubMed ID: 30714008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-printing and the effect on medical costs: a new era?
    Choonara YE; du Toit LC; Kumar P; Kondiah PP; Pillay V
    Expert Rev Pharmacoecon Outcomes Res; 2016; 16(1):23-32. PubMed ID: 26817398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Use of Three-Dimensional Printing in Cardiac Structural Disease: A Review.
    Hornstein G; Diep C; Masson JB; Potvin J; Gobeil JF; Noiseux N; Forcillo J
    Innovations (Phila); 2023; 18(2):132-143. PubMed ID: 36988286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing for clinical application in otorhinolaryngology.
    Zhong N; Zhao X
    Eur Arch Otorhinolaryngol; 2017 Dec; 274(12):4079-4089. PubMed ID: 28929219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printing: an appealing technology for the manufacturing of solid oral dosage forms.
    Pitzanti G; Mathew E; Andrews GP; Jones DS; Lamprou DA
    J Pharm Pharmacol; 2022 Oct; 74(10):1427-1449. PubMed ID: 34529072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Dimensional Printing: A Catalyst for a Changing Orthopaedic Landscape.
    Minto J; Zhou X; Osborn J; Zhang LG; Sarkar K; Rao RD
    JBJS Rev; 2020 Feb; 8(2):e0076. PubMed ID: 32224627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-body wear of occlusal splint materials from subtractive computer-aided manufacturing and three-dimensional printing.
    Schmeiser F; Baumert U; Stawarczyk B
    Clin Oral Investig; 2022 Sep; 26(9):5857-5866. PubMed ID: 35612645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of three-dimensional printing technology in orthopaedic surgery.
    Wong TM; Jin J; Lau TW; Fang C; Yan CH; Yeung K; To M; Leung F
    J Orthop Surg (Hong Kong); 2017 Jan; 25(1):2309499016684077. PubMed ID: 28142354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-Dimensional Printing in Orthopedics: from the Basics to Surgical Applications.
    Ejnisman L; Gobbato B; de França Camargo AF; Zancul E
    Curr Rev Musculoskelet Med; 2021 Feb; 14(1):1-8. PubMed ID: 33409834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional printing in orthopaedic surgery: review of current and future applications.
    Mulford JS; Babazadeh S; Mackay N
    ANZ J Surg; 2016 Sep; 86(9):648-53. PubMed ID: 27071485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An overview of 3D printing and the orthopaedic application of patient-specific models in malunion surgery.
    Thomas CN; Mavrommatis S; Schroder LK; Cole PA
    Injury; 2022 Mar; 53(3):977-983. PubMed ID: 34838259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.