BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35635174)

  • 1. Expression Level of the
    Arif ED; Saeed NM; Rachid SK; Dyary HO; Rashid PMA
    Pol J Microbiol; 2022 Mar; 71(1):115-121. PubMed ID: 35635174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling antibody responses to infections by Chlamydia abortus enables identification of potential virulence factors and candidates for serodiagnosis.
    Forsbach-Birk V; Foddis C; Simnacher U; Wilkat M; Longbottom D; Walder G; Benesch C; Ganter M; Sachse K; Essig A
    PLoS One; 2013; 8(11):e80310. PubMed ID: 24260366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Identification of
    Arif ED; Saeed NM; Rachid SK
    Pol J Microbiol; 2020; 69(1):1-7. PubMed ID: 32108450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of protective and immune responses following vaccination with recombinant MIP and CPAF from Chlamydia abortus as novel vaccines for enzootic abortion of ewes.
    O'Neill LM; Keane OM; Ross PJ; Nally JE; Seshu J; Markey B
    Vaccine; 2019 Aug; 37(36):5428-5438. PubMed ID: 31375438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of immunologically relevant proteins of Chlamydophila abortus using sera from experimentally infected pregnant ewes.
    Marques PX; Souda P; O'Donovan J; Gutierrez J; Gutierrez EJ; Worrall S; McElroy M; Proctor A; Brady C; Sammin D; Basset HF; Whitelegge JP; Markey BE; Nally JE
    Clin Vaccine Immunol; 2010 Aug; 17(8):1274-81. PubMed ID: 20554807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Humoral Immune Responses to Surface and Virulence-Associated Chlamydia abortus Proteins in Ovine and Human Abortions by Use of a Newly Developed Line Immunoassay.
    Hagemann JB; Simnacher U; Longbottom D; Livingstone M; Maile J; Soutschek E; Walder G; Boden K; Sachse K; Essig A
    J Clin Microbiol; 2016 Jul; 54(7):1883-1890. PubMed ID: 27194684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibody responses to recombinant protein fragments of the major outer membrane protein and polymorphic outer membrane protein POMP90 in Chlamydophila abortus-infected pregnant sheep.
    Livingstone M; Entrican G; Wattegedera S; Buxton D; McKendrick IJ; Longbottom D
    Clin Diagn Lab Immunol; 2005 Jun; 12(6):770-7. PubMed ID: 15939753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic and molecular analysis based on genes 16S-rRNA, OMPA and POMP to identify
    Taheri F; Ownagh A; Mardani K
    Iran J Microbiol; 2021 Aug; 13(4):480-487. PubMed ID: 34557276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the 1B vaccine strain of Chlamydia abortus in aborted placentas during the investigation of toxaemic and systemic disease in sheep.
    Sargison ND; Truyers IG; Howie FE; Thomson JR; Cox AL; Livingstone M; Longbottom D
    N Z Vet J; 2015 Sep; 63(5):284-7. PubMed ID: 25695509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression patterns of five polymorphic membrane proteins during the Chlamydia abortus developmental cycle.
    Wheelhouse N; Sait M; Wilson K; Aitchison K; McLean K; Smith DG; Longbottom D
    Vet Microbiol; 2012 Dec; 160(3-4):525-9. PubMed ID: 22776512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of the protective efficacy of two formulations of a recombinant Chlamydia abortus subunit candidate vaccine in a mouse model.
    Pan Q; Pais R; Ohandjo A; He C; He Q; Omosun Y; Igietseme JU; Eko FO
    Vaccine; 2015 Apr; 33(15):1865-72. PubMed ID: 25698486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of Chlamydia abortus polymorphic membrane protein 18D during the chlamydial developmental cycle.
    Wheelhouse NM; Sait M; Aitchison K; Livingstone M; Wright F; McLean K; Inglis NF; Smith DG; Longbottom D
    PLoS One; 2012; 7(11):e49190. PubMed ID: 23145118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOMP and MIP DNA-loaded bacterial ghosts reduce the severity of lung lesions in mice after Chlamydia psittaci respiratory tract infection.
    Zhou P; Wu H; Chen S; Bai Q; Chen X; Chen L; Zeng X; Liu L; Chen L
    Immunobiology; 2019 Nov; 224(6):739-746. PubMed ID: 31561842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amniotic and allantoic fluids from experimentally infected sheep contain immunoglobulin specific for Chlamydophila abortus.
    Marques PX; O'Donovan J; Souda P; Gutierrez J; Williams EJ; Worrall S; McElroy M; Proctor A; Brady C; Sammin D; Basset H; Whitelegge JP; Markey BK; Nally JE
    Vet Immunol Immunopathol; 2011 Mar; 140(1-2):1-9. PubMed ID: 21126774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abortion storm induced by the live C. abortus vaccine 1B strain in a vaccinated sheep flock, mimicking a natural wild-type infection.
    Laroucau K; Aaziz R; Vorimore F; Menard MF; Longbottom D; Denis G
    Vet Microbiol; 2018 Nov; 225():31-33. PubMed ID: 30322529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three commercial serological tests for the detection of
    O'Neill LM; O'Driscoll Á; Markey B
    Ir Vet J; 2018; 71():13. PubMed ID: 29854397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an ompA-based phage-mediated DNA vaccine against Chlamydia abortus in piglets.
    Ou C; Tian D; Ling Y; Pan Q; He Q; Eko FO; He C
    Int Immunopharmacol; 2013 Aug; 16(4):505-10. PubMed ID: 23669337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seroprevalence and molecular characterization of Chlamydia abortus in frozen fetal and placental tissues of aborting ewes in northeastern Algeria.
    Hireche S; Ababneh MM; Bouaziz O; Boussena S
    Trop Anim Health Prod; 2016 Feb; 48(2):255-62. PubMed ID: 26526957
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Pan Q; Zhang Q; Chu J; Pais R; Liu S; He C; Eko FO
    Front Cell Infect Microbiol; 2017; 7():514. PubMed ID: 29326885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring clinical outcomes, pathological changes and shedding of Chlamydophila abortus following experimental challenge of periparturient ewes utilizing the natural route of infection.
    Gutierrez J; Williams EJ; O'Donovan J; Brady C; Proctor AF; Marques PX; Worrall S; Nally JE; McElroy M; Bassett HF; Sammin DJ; Markey BK
    Vet Microbiol; 2011 Jan; 147(1-2):119-26. PubMed ID: 20638204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.