BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35635608)

  • 1. Shine-through artifact due to high-radioactivity bladder and bowel gas in
    Tomita Y; Ichikawa Y; Sakuma H
    Ann Nucl Med; 2022 Aug; 36(8):736-745. PubMed ID: 35635608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a perirectal artifact in 18F-FDG PET/CT.
    Lodge MA; Chaudhry MA; Udall DN; Wahl RL
    J Nucl Med; 2010 Oct; 51(10):1501-6. PubMed ID: 20847169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The value of Bayesian penalized likelihood reconstruction for improving lesion conspicuity of malignant lung tumors on
    Kurita Y; Ichikawa Y; Nakanishi T; Tomita Y; Hasegawa D; Murashima S; Hirano T; Sakuma H
    Ann Nucl Med; 2020 Apr; 34(4):272-279. PubMed ID: 32060780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical evaluation of a block sequential regularized expectation maximization reconstruction algorithm in 18F-FDG PET/CT studies.
    Sah BR; Stolzmann P; Delso G; Wollenweber SD; Hüllner M; Hakami YA; Queiroz MA; Barbosa FG; von Schulthess GK; Pietsch C; Veit-Haibach P
    Nucl Med Commun; 2017 Jan; 38(1):57-66. PubMed ID: 27755394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative clinical evaluation of simultaneous reconstruction of attenuation and activity in time-of-flight PET.
    Zhang H; Wang J; Li N; Zhang Y; Cui J; Huo L; Zhang H
    BMC Med Imaging; 2023 Feb; 23(1):35. PubMed ID: 36849906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction.
    Rogasch JM; Hofheinz F; Lougovski A; Furth C; Ruf J; Großer OS; Mohnike K; Hass P; Walke M; Amthauer H; Steffen IG
    EJNMMI Phys; 2014 Dec; 1(1):12. PubMed ID: 26501454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal Artifact Reduction of CT Scans to Improve PET/CT.
    van der Vos CS; Arens AIJ; Hamill JJ; Hofmann C; Panin VY; Meeuwis APW; Visser EP; de Geus-Oei LF
    J Nucl Med; 2017 Nov; 58(11):1867-1872. PubMed ID: 28490470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving CT-Based PET Attenuation Correction in the Vicinity of Metal Implants by an Iterative Metal Artifact Reduction Algorithm of CT Data and Its Comparison to Dual-Energy-Based Strategies: A Phantom Study.
    Schabel C; Gatidis S; Bongers M; Hüttig F; Bier G; Kupferschlaeger J; Bamberg F; la Fougère C; Nikolaou K; Pfannenberg C
    Invest Radiol; 2017 Jan; 52(1):61-65. PubMed ID: 27416330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of time of flight and point spread function on quantitative parameters of lung lesions in
    Huang K; Feng Y; Liang W; Li L
    BMC Med Imaging; 2021 Nov; 21(1):169. PubMed ID: 34773998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with
    Magota K; Shiga T; Asano Y; Shinyama D; Ye J; Perkins AE; Maniawski PJ; Toyonaga T; Kobayashi K; Hirata K; Katoh C; Hattori N; Tamaki N
    J Nucl Med; 2017 Dec; 58(12):2020-2025. PubMed ID: 28646012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in PET Image Quality in Time of Flight (TOF) Simultaneous PET/MRI.
    Minamimoto R; Levin C; Jamali M; Holley D; Barkhodari A; Zaharchuk G; Iagaru A
    Mol Imaging Biol; 2016 Oct; 18(5):776-81. PubMed ID: 26884058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Value of
    Alobthani G; Romanov V; Isohashi K; Matsunaga K; Watabe T; Kato H; Tatsumi M; Shimosegawa E; Hatazawa J
    Hell J Nucl Med; 2018; 21(1):7-14. PubMed ID: 29550841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Accuracy of Standardized Uptake Values of
    Tlostanova MS; Chipiga LA
    Sovrem Tekhnologii Med; 2021; 13(3):15-23. PubMed ID: 34603751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced count pediatric whole-body
    Alves VPV; Ata NA; MacLean J; Sharp SE; Li Y; Brady S; Trout AT
    Pediatr Radiol; 2024 Jan; 54(1):170-180. PubMed ID: 37962603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of maximum likelihood and conventional PET scatter scaling methods for
    Bal H; Kiser JW; Conti M; Bowen SL
    Med Phys; 2021 Aug; 48(8):4218-4228. PubMed ID: 34013586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of [
    Liu Y; Gao MJ; Zhou J; Du F; Chen L; Huang ZK; Hu JB; Lou C
    BMC Med Imaging; 2021 Sep; 21(1):133. PubMed ID: 34530768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity.
    Kidera D; Kihara K; Akamatsu G; Mikasa S; Taniguchi T; Tsutsui Y; Takeshita T; Maebatake A; Miwa K; Sasaki M
    Ann Nucl Med; 2016 Feb; 30(2):97-103. PubMed ID: 26531181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utility of early dynamic and delayed post-diuretic
    Sharma A; Mete UK; Sood A; Kakkar N; Gorla AK; Mittal BR
    Br J Radiol; 2017 Apr; 90(1072):20160787. PubMed ID: 28256904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Lymph Node Metastasis in Patients with Bladder Cancer using Maximum Standardised Uptake Value and
    Vind-Kezunovic S; Bouchelouche K; Ipsen P; Høyer S; Bell C; Bjerggaard Jensen J
    Eur Urol Focus; 2019 Jan; 5(1):90-96. PubMed ID: 28753817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.