These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35635950)

  • 1. Ring replacement recommender: Ring modifications for improving biological activity.
    Ertl P; Altmann E; Racine S; Lewis R
    Eur J Med Chem; 2022 Aug; 238():114483. PubMed ID: 35635950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The most common linkers in bioactive molecules and their bioisosteric replacement network.
    Ertl P; Altmann E; Racine S
    Bioorg Med Chem; 2023 Mar; 81():117194. PubMed ID: 36773350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Database of 4 Million Medicinal Chemistry-Relevant Ring Systems.
    Ertl P
    J Chem Inf Model; 2024 Feb; 64(4):1245-1250. PubMed ID: 38311838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which boronic acids are used most frequently for synthesis of bioactive molecules?
    Ertl P; Altmann E; Racine S; Decoret O
    Bioorg Med Chem; 2023 Aug; 91():117405. PubMed ID: 37421711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico techniques for the identification of bioisosteric replacements for drug design.
    Devereux M; Popelier PL
    Curr Top Med Chem; 2010; 10(6):657-68. PubMed ID: 20337588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Bioisosteric Substituents by a Deep Neural Network.
    Ertl P
    J Chem Inf Model; 2020 Jul; 60(7):3369-3375. PubMed ID: 32539382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.
    Ghose AK; Viswanadhan VN; Wendoloski JJ
    J Comb Chem; 1999 Jan; 1(1):55-68. PubMed ID: 10746014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current directions in the evolution of compound libraries.
    Webb TR
    Curr Opin Drug Discov Devel; 2005 May; 8(3):303-8. PubMed ID: 15892244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug discovery in the kinase inhibitory field using the Nested Chemical Library technology.
    Kéri G; Székelyhidi Z; Bánhegyi P; Varga Z; Hegymegi-Barakonyi B; Szántai-Kis C; Hafenbradl D; Klebl B; Muller G; Ullrich A; Erös D; Horváth Z; Greff Z; Marosfalvi J; Pató J; Szabadkai I; Szilágyi I; Szegedi Z; Varga I; Wáczek F; Orfi L
    Assay Drug Dev Technol; 2005 Oct; 3(5):543-51. PubMed ID: 16305311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic enumeration of heteroaromatic ring systems as reagents for use in medicinal chemistry.
    Ward RA; Kettle JG
    J Med Chem; 2011 Jul; 54(13):4670-7. PubMed ID: 21650161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds.
    Ertl P; Jelfs S; Mühlbacher J; Schuffenhauer A; Selzer P
    J Med Chem; 2006 Jul; 49(15):4568-73. PubMed ID: 16854061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale exploration of bioisosteric replacements on the basis of matched molecular pairs.
    Wassermann AM; Bajorath J
    Future Med Chem; 2011 Mar; 3(4):425-36. PubMed ID: 21452979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Vector Pattern Diversity of Molecular Scaffolds for Cheminformatics Tasks in Drug Discovery.
    Dolciami D; Ziolek RM; Davies DW; Carter M; Mok NY; Sherhod R
    J Chem Inf Model; 2024 Mar; 64(6):1966-1974. PubMed ID: 38437714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Craig plot 2.0: an interactive navigation in the substituent bioisosteric space.
    Ertl P
    J Cheminform; 2020 Jan; 12(1):8. PubMed ID: 33431001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Isostere Database: a web-based tool using quantum chemical topology to predict bioisosteric replacements for drug design.
    Devereux M; Popelier PL; McLay IM
    J Chem Inf Model; 2009 Jun; 49(6):1497-513. PubMed ID: 19453153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The most common chemical replacements in drug-like compounds.
    Sheridan RP
    J Chem Inf Comput Sci; 2002; 42(1):103-8. PubMed ID: 11855973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magic Rings: Navigation in the Ring Chemical Space Guided by the Bioactive Rings.
    Ertl P
    J Chem Inf Model; 2022 May; 62(9):2164-2170. PubMed ID: 34445865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico identification of bioisosteric functional groups.
    Ertl P
    Curr Opin Drug Discov Devel; 2007 May; 10(3):281-8. PubMed ID: 17554854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BoBER: web interface to the base of bioisosterically exchangeable replacements.
    Lešnik S; Škrlj B; Eržen N; Bren U; Gobec S; Konc J; Janežič D
    J Cheminform; 2017 Dec; 9(1):62. PubMed ID: 29234984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.