These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35635990)

  • 1. Biological management of acidity in wine industry: A review.
    Vicente J; Baran Y; Navascués E; Santos A; Calderón F; Marquina D; Rauhut D; Benito S
    Int J Food Microbiol; 2022 Aug; 375():109726. PubMed ID: 35635990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Use of S. pombe and L. thermotolerans in Winemaking. Beneficial Effects Determined Through the Study of Wines' Analytical Characteristics.
    Benito Á; Calderón F; Benito S
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27999345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combine Use of Selected Schizosaccharomyces pombe and Lachancea thermotolerans Yeast Strains as an Alternative to the Traditional Malolactic Fermentation in Red Wine Production.
    Benito Á; Calderón F; Palomero F; Benito S
    Molecules; 2015 May; 20(6):9510-23. PubMed ID: 26016543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Combined Use of
    Urbina Á; Calderón F; Benito S
    Foods; 2021 Jun; 10(6):. PubMed ID: 34199225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region.
    Wojdyło A; Samoticha J; Chmielewska J
    J Food Sci; 2020 Apr; 85(4):1070-1081. PubMed ID: 32125714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mixed species alcoholic fermentation on growth and malolactic activity of lactic acid bacteria.
    Englezos V; Cachón DC; Rantsiou K; Blanco P; Petrozziello M; Pollon M; Giacosa S; Río Segade S; Rolle L; Cocolin L
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7687-7702. PubMed ID: 31388732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Combined Use of Schizosaccharomyces pombe and Lachancea thermotolerans-Effect on the Anthocyanin Wine Composition.
    Benito Á; Calderón F; Benito S
    Molecules; 2017 May; 22(5):. PubMed ID: 28471391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains.
    Brizuela NS; Bravo-Ferrada BM; Pozo-Bayón MÁ; Semorile L; Elizabeth Tymczyszyn E
    Food Res Int; 2018 Apr; 106():22-28. PubMed ID: 29579921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and metabolism of Oenococcus oeni for malolactic fermentation under pressure.
    Neto R; Mota MJ; Lopes RP; Delgadillo I; Saraiva JA
    Lett Appl Microbiol; 2016 Dec; 63(6):426-433. PubMed ID: 27581841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of SO₂ binding compounds by Oenococcus oeni during and after malolactic fermentation in white wine.
    Jackowetz JN; Mira de Orduña R
    Int J Food Microbiol; 2012 Apr; 155(3):153-7. PubMed ID: 22417710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment.
    Jiang J; Sumby KM; Sundstrom JF; Grbin PR; Jiranek V
    Food Microbiol; 2018 Aug; 73():150-159. PubMed ID: 29526200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of changes in wine composition produced by non-Saccharomyces on malolactic fermentation.
    Balmaseda A; Rozès N; Leal MÁ; Bordons A; Reguant C
    Int J Food Microbiol; 2021 Jan; 337():108954. PubMed ID: 33202298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative functional analysis of malate metabolism genes in Oenococcus oeni and Lactiplantibacillus plantarum at low pH and their roles in acid stress response.
    Chen Q; Hao N; Zhao L; Yang X; Yuan Y; Zhao Y; Wang F; Qiu Z; He L; Shi K; Liu S
    Food Res Int; 2022 Jul; 157():111235. PubMed ID: 35761547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation.
    Wang S; Li S; Zhao H; Gu P; Chen Y; Zhang B; Zhu B
    Food Res Int; 2018 Jun; 108():254-263. PubMed ID: 29735055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Schizosaccharomyces pombe Biotechnological Applications in Winemaking.
    Benito Á; Calderón F; Benito S
    Methods Mol Biol; 2018; 1721():217-226. PubMed ID: 29423860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine.
    Bartowsky EJ; Borneman AR
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):441-7. PubMed ID: 21870044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of simultaneous and sequential malolactic fermentation in durian wine.
    Taniasuri F; Lee PR; Liu SQ
    Int J Food Microbiol; 2016 Aug; 230():1-9. PubMed ID: 27104664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria.
    Lee JE; Hwang GS; Lee CH; Hong YS
    J Agric Food Chem; 2009 Nov; 57(22):10772-83. PubMed ID: 19919120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine.
    Favier M; Bilhère E; Lonvaud-Funel A; Moine V; Lucas PM
    PLoS One; 2012; 7(11):e49082. PubMed ID: 23139835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice.
    Minnaar PP; Jolly NP; Paulsen V; Du Plessis HW; Van Der Rijst M
    Int J Food Microbiol; 2017 Sep; 257():232-237. PubMed ID: 28697384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.