These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35636110)
1. Response relationship of environmental factors caused by toluene concentration during leaching of capillary zone. Zuo R; Shi J; Han K; Xu D; Li Q; Zhao X; Xue Z; Xu Y; Wu Z; Wang J J Environ Manage; 2022 Sep; 317():115366. PubMed ID: 35636110 [TBL] [Abstract][Full Text] [Related]
2. Response of environmental factors to attenuation of toluene in vadose zone. Zuo R; Han K; Xu D; Li Q; Liu J; Xue Z; Zhao X; Wang J J Environ Manage; 2022 Jan; 302(Pt A):113968. PubMed ID: 34689029 [TBL] [Abstract][Full Text] [Related]
3. Spatial distribution characteristics and degradation mechanism of microorganisms in n-hexadecane contaminated vadose zone. Han K; Zuo R; Cao X; Xu D; Zhao X; Shi J; Xue Z; Xu Y; Wu Z; Wang J Sci Total Environ; 2024 May; 924():171462. PubMed ID: 38447732 [TBL] [Abstract][Full Text] [Related]
4. In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Hess A; Zarda B; Hahn D; Häner A; Stax D; Höhener P; Zeyer J Appl Environ Microbiol; 1997 Jun; 63(6):2136-41. PubMed ID: 9172330 [TBL] [Abstract][Full Text] [Related]
5. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems. Grösbacher M; Eckert D; Cirpka OA; Griebler C Biodegradation; 2018 Jun; 29(3):211-232. PubMed ID: 29492777 [TBL] [Abstract][Full Text] [Related]
6. Insights into the characteristics of changes in dissolved organic matter fluorescence components on the natural attenuation process of toluene. Feng F; Yang Y; Liu Q; Wu S; Yun Z; Xu X; Jiang Y J Hazard Mater; 2024 Sep; 476():134952. PubMed ID: 38944985 [TBL] [Abstract][Full Text] [Related]
7. Degradation of benzene, toluene, and xylene isomers by a bacterial consortium obtained from rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated area. Ortega-González DK; Zaragoza D; Aguirre-Garrido J; Ramírez-Saad H; Hernández-Rodríguez C; Jan-Roblero J Folia Microbiol (Praha); 2013 Nov; 58(6):569-77. PubMed ID: 23564628 [TBL] [Abstract][Full Text] [Related]
8. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation. Takahata Y; Kasai Y; Hoaki T; Watanabe K Appl Microbiol Biotechnol; 2006 Dec; 73(3):713-22. PubMed ID: 16957896 [TBL] [Abstract][Full Text] [Related]
9. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. Richnow HH; Annweiler E; Michaelis W; Meckenstock RU J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203 [TBL] [Abstract][Full Text] [Related]
10. In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers. Zoller U; Reznik A Environ Sci Pollut Res Int; 2006 Oct; 13(6):392-7. PubMed ID: 17120829 [TBL] [Abstract][Full Text] [Related]
11. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
12. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline. Robertson WJ; Franzmann PD; Mee BJ J Appl Microbiol; 2000 Feb; 88(2):248-59. PubMed ID: 10735993 [TBL] [Abstract][Full Text] [Related]
13. Application of an emulsified polycolloid substrate biobarrier to remediate petroleum-hydrocarbon contaminated groundwater. Lee TH; Tsang DCW; Chen WH; Verpoort F; Sheu YT; Kao CM Chemosphere; 2019 Mar; 219():444-455. PubMed ID: 30551111 [TBL] [Abstract][Full Text] [Related]
14. Soil column leaching of pesticides. Katagi T Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. Kuppardt A; Kleinsteuber S; Vogt C; Lüders T; Harms H; Chatzinotas A Microb Ecol; 2014 Aug; 68(2):222-34. PubMed ID: 24623528 [TBL] [Abstract][Full Text] [Related]
16. Toluene biodegradation in the vadose zone of a poplar phytoremediation system identified using metagenomics and toluene-specific stable carbon isotope analysis. BenIsrael M; Wanner P; Aravena R; Parker BL; Haack EA; Tsao DT; Dunfield KE Int J Phytoremediation; 2019; 21(1):60-69. PubMed ID: 30648419 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic mineralization of toluene by enriched soil-free consortia with solid-phase humin as a terminal electron acceptor. Jiang H; Chen D; Zheng D; Xiao Z Environ Pollut; 2023 Jan; 317():120794. PubMed ID: 36460188 [TBL] [Abstract][Full Text] [Related]
18. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates. Patterson BM; Aravena R; Davis GB; Furness AJ; Bastow TP; Bouchard D J Contam Hydrol; 2013 Oct; 153():69-77. PubMed ID: 23999077 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting the biodegradation of toluene in soil. Davis JW; Madsen S Chemosphere; 1996 Jul; 33(1):107-30. PubMed ID: 8680827 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments. Khan AM; Wick LY; Harms H; Thullner M Environ Pollut; 2016 Apr; 211():325-31. PubMed ID: 26774779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]