These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 35636138)
21. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. De Oliveira JF; De Aguiar PF; Rossi AM; Soares GA Artif Organs; 2003 May; 27(5):406-11. PubMed ID: 12752198 [TBL] [Abstract][Full Text] [Related]
22. Bioperformance Studies of Biphasic Calcium Phosphate Scaffolds Extracted from Fish Bones Impregnated with Free Curcumin and Complexed with β-Cyclodextrin in Bone Regeneration. Truite CVR; Noronha JNG; Prado GC; Santos LN; Palácios RS; do Nascimento A; Volnistem EA; da Silva Crozatti TT; Francisco CP; Sato F; Weinand WR; Hernandes L; Matioli G Biomolecules; 2022 Feb; 12(3):. PubMed ID: 35327575 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Alam MI; Asahina I; Ohmamiuda K; Takahashi K; Yokota S; Enomoto S Biomaterials; 2001 Jun; 22(12):1643-51. PubMed ID: 11374466 [TBL] [Abstract][Full Text] [Related]
24. [Experimental studies of healing process on compound blocks of hydroxyapatite (HAP) particles and tricalcium phosphate (TCP) powder implantation in rabbit mandible--comparison of HAP/TCP ratios and plastic methods]. Harada Y Shikwa Gakuho; 1989 Feb; 89(2):263-97. PubMed ID: 2548287 [TBL] [Abstract][Full Text] [Related]
25. Surface instability of calcium phosphate ceramics in tissue culture medium and the effect on adhesion and growth of anchorage-dependent animal cells. Suzuki T; Yamamoto T; Toriyama M; Nishizawa K; Yokogawa Y; Mucalo MR; Kawamoto Y; Nagata F; Kameyama T J Biomed Mater Res; 1997 Mar; 34(4):507-17. PubMed ID: 9054534 [TBL] [Abstract][Full Text] [Related]
26. Experimental substantiation of the use of hydroxyapatite - tricalcium phosphate bioceramics for replacing bone defects after tumor removal. Konovalenko VF; Ternovyi NK; Tuz EV; Protsenko VV; Solonitsyn EO; Abudayeh A; Drobotun OV; Ulianchych NV Exp Oncol; 2021 Sep; 43(3):237-241. PubMed ID: 34591421 [TBL] [Abstract][Full Text] [Related]
27. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280 [TBL] [Abstract][Full Text] [Related]
28. In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and β-Tricalcium Phosphate. Jang HL; Zheng GB; Park J; Kim HD; Baek HR; Lee HK; Lee K; Han HN; Lee CK; Hwang NS; Lee JH; Nam KT Adv Healthc Mater; 2016 Jan; 5(1):128-36. PubMed ID: 25963732 [TBL] [Abstract][Full Text] [Related]
29. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Lin FH; Liao CJ; Chen KS; Su JS; Lin CP Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472 [TBL] [Abstract][Full Text] [Related]
30. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Raynaud S; Champion E; Lafon JP; Bernache-Assollant D Biomaterials; 2002 Feb; 23(4):1081-9. PubMed ID: 11791911 [TBL] [Abstract][Full Text] [Related]
31. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762 [TBL] [Abstract][Full Text] [Related]
32. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study. Sotome S; Ae K; Okawa A; Ishizuki M; Morioka H; Matsumoto S; Nakamura T; Abe S; Beppu Y; Shinomiya K J Orthop Sci; 2016 May; 21(3):373-80. PubMed ID: 26961287 [TBL] [Abstract][Full Text] [Related]
33. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. Madhumathi K; Rubaiya Y; Doble M; Venkateswari R; Sampath Kumar TS Drug Deliv Transl Res; 2018 Oct; 8(5):1066-1077. PubMed ID: 29717475 [TBL] [Abstract][Full Text] [Related]
34. Preparation and characterization of novel biphasic calcium phosphate powders (alpha-TCP/HA) derived from carbonated amorphous calcium phosphates. Li Y; Kong F; Weng W J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):508-517. PubMed ID: 18937266 [TBL] [Abstract][Full Text] [Related]
35. Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. Kundu B; Lemos A; Soundrapandian C; Sen PS; Datta S; Ferreira JM; Basu D J Mater Sci Mater Med; 2010 Nov; 21(11):2955-69. PubMed ID: 20644982 [TBL] [Abstract][Full Text] [Related]
36. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Lobo SE; Glickman R; da Silva WN; Arinzeh TL; Kerkis I Cell Tissue Res; 2015 Aug; 361(2):477-95. PubMed ID: 25676006 [TBL] [Abstract][Full Text] [Related]
37. Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Nevado P; Lopera A; Bezzon V; Fulla MR; Palacio J; Zaghete MA; Biasotto G; Montoya A; Rivera J; Robledo SM; Estupiñan H; Paucar C; Garcia C Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111013. PubMed ID: 32993985 [TBL] [Abstract][Full Text] [Related]
38. Effect of precursor's solubility on the mechanical property of hydroxyapatite formed by dissolution-precipitation reaction of tricalcium phosphate. Ahmad N; Tsuru K; Munar ML; Maruta M; Matsuya S; Ishikawa K Dent Mater J; 2012; 31(6):995-1000. PubMed ID: 23207206 [TBL] [Abstract][Full Text] [Related]
39. Development of injectable chitosan/biphasic calcium phosphate bone cement and in vitro and in vivo evaluation. Rattanachan ST; Srakaew NL; Thaitalay P; Thongsri O; Dangviriyakul R; Srisuwan S; Suksaweang S; Widelitz RB; Chuong CM; Srithunyarat T; Kampa N; Kaenkangploo D; Hoisang S; Jittimanee S; Wipoosak P; Kamlangchai P; Yongvanit K; Tuchpramuk P Biomed Mater; 2020 Sep; 15(5):055038. PubMed ID: 32217815 [TBL] [Abstract][Full Text] [Related]
40. The formation mechanism of the beta-TCP phase in synthetic fluorohydroxyapatite with different fluorine contents. Zhao H; Wang F; Chen X; Wei Z; Yu D; Jiang Z Biomed Mater; 2010 Aug; 5(4):045011. PubMed ID: 20644239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]