BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35636344)

  • 1. Real-time motion monitoring improves functional MRI data quality in infants.
    Badke D'Andrea C; Kenley JK; Montez DF; Mirro AE; Miller RL; Earl EA; Koller JM; Sung S; Yacoub E; Elison JT; Fair DA; Dosenbach NUF; Rogers CE; Smyser CD; Greene DJ
    Dev Cogn Neurosci; 2022 Jun; 55():101116. PubMed ID: 35636344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time motion analytics during brain MRI improve data quality and reduce costs.
    Dosenbach NUF; Koller JM; Earl EA; Miranda-Dominguez O; Klein RL; Van AN; Snyder AZ; Nagel BJ; Nigg JT; Nguyen AL; Wesevich V; Greene DJ; Fair DA
    Neuroimage; 2017 Nov; 161():80-93. PubMed ID: 28803940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction of respiratory artifacts in MRI head motion estimates.
    Fair DA; Miranda-Dominguez O; Snyder AZ; Perrone A; Earl EA; Van AN; Koller JM; Feczko E; Tisdall MD; van der Kouwe A; Klein RL; Mirro AE; Hampton JM; Adeyemo B; Laumann TO; Gratton C; Greene DJ; Schlaggar BL; Hagler DJ; Watts R; Garavan H; Barch DM; Nigg JT; Petersen SE; Dale AM; Feldstein-Ewing SW; Nagel BJ; Dosenbach NUF
    Neuroimage; 2020 Mar; 208():116400. PubMed ID: 31778819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLIMM: Slice localization integrated MRI monitoring.
    Sui Y; Afacan O; Gholipour A; Warfield SK
    Neuroimage; 2020 Dec; 223():117280. PubMed ID: 32853815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time and Recursive Estimators for Functional MRI Quality Assessment.
    Davydov N; Peek L; Auer T; Prilepin E; Gninenko N; Van De Ville D; Nikonorov A; Koush Y
    Neuroinformatics; 2022 Oct; 20(4):897-917. PubMed ID: 35297018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brief mock-scan training reduces head motion during real scanning for children: A growth curve study.
    Gao P; Wang YS; Lu QY; Rong MJ; Fan XR; Holmes AJ; Dong HM; Li HF; Zuo XN
    Dev Cogn Neurosci; 2023 Jun; 61():101244. PubMed ID: 37062244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data.
    Lanka P; Deshpande G
    Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and environmental influences on MRI scan quantity and quality.
    Achterberg M; van der Meulen M
    Dev Cogn Neurosci; 2019 Aug; 38():100667. PubMed ID: 31170550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head Motion and Correction Methods in Resting-state Functional MRI.
    Goto M; Abe O; Miyati T; Yamasue H; Gomi T; Takeda T
    Magn Reson Med Sci; 2016; 15(2):178-86. PubMed ID: 26701695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion.
    Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T
    Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration.
    Hoinkiss DC; Erhard P; Breutigam NJ; von Samson-Himmelstjerna F; Günther M; Porter DA
    Neuroimage; 2019 Oct; 200():159-173. PubMed ID: 31226496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The compensation of head motion artifacts using an infrared tracking system and a new algorithm for fMRI.
    Christian D; Younis W; Winter J; Sakas G; Firle E; Stergiopoulos S
    Stud Health Technol Inform; 2004; 98():75-81. PubMed ID: 15544247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral interventions for reducing head motion during MRI scans in children.
    Greene DJ; Koller JM; Hampton JM; Wesevich V; Van AN; Nguyen AL; Hoyt CR; McIntyre L; Earl EA; Klein RL; Shimony JS; Petersen SE; Schlaggar BL; Fair DA; Dosenbach NUF
    Neuroimage; 2018 May; 171():234-245. PubMed ID: 29337280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying MR head motion in the Rhineland Study - A robust method for population cohorts.
    Pollak C; Kügler D; Breteler MMB; Reuter M
    Neuroimage; 2023 Jul; 275():120176. PubMed ID: 37209757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Less head motion during MRI under task than resting-state conditions.
    Huijbers W; Van Dijk KRA; Boenniger MM; Stirnberg R; Breteler MMB
    Neuroimage; 2017 Feb; 147():111-120. PubMed ID: 27919751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion.
    Savalia NK; Agres PF; Chan MY; Feczko EJ; Kennedy KM; Wig GS
    Hum Brain Mapp; 2017 Jan; 38(1):472-492. PubMed ID: 27634551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
    Todd N; Josephs O; Callaghan MF; Lutti A; Weiskopf N
    Neuroimage; 2015 Jun; 113():1-12. PubMed ID: 25783205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling motion artefact levels in MR images by suspending data acquisition during periods of head motion.
    Castella R; Arn L; Dupuis E; Callaghan MF; Draganski B; Lutti A
    Magn Reson Med; 2018 Dec; 80(6):2415-2426. PubMed ID: 29687919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agito ergo sum: Correlates of spatio-temporal motion characteristics during fMRI.
    Bolton TAW; Kebets V; Glerean E; Zöller D; Li J; Yeo BTT; Caballero-Gaudes C; Van De Ville D
    Neuroimage; 2020 Apr; 209():116433. PubMed ID: 31841680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.