These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 35636600)
1. Copper removal and elemental sulfur recovery from fracturing flowback water in a microbial fuel cell with an extra electrochemical anode. Wu S; Zhang X; Lu P; Zhang D Chemosphere; 2022 Sep; 303(Pt 2):135128. PubMed ID: 35636600 [TBL] [Abstract][Full Text] [Related]
2. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. Zhang X; Zhang D; Huang Y; Wu S; Lu P Water Res; 2020 Oct; 185():116270. PubMed ID: 32784035 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell. Zhang X; Zhang D; Huang Y; Zhang K; Lu P Water Res; 2018 Dec; 147():461-471. PubMed ID: 30343202 [TBL] [Abstract][Full Text] [Related]
4. Efficient sulfur cycling improved the performance of flowback water treatment in a microbial fuel cell. Zhang X; Wei S; Zhang D; Lu P; Huang Y J Environ Manage; 2022 Dec; 323():116368. PubMed ID: 36261973 [TBL] [Abstract][Full Text] [Related]
5. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Miran W; Jang J; Nawaz M; Shahzad A; Jeong SE; Jeon CO; Lee DS Chemosphere; 2017 Dec; 189():134-142. PubMed ID: 28934653 [TBL] [Abstract][Full Text] [Related]
6. Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Lee DJ; Liu X; Weng HL Bioresour Technol; 2014 Mar; 156():14-9. PubMed ID: 24480414 [TBL] [Abstract][Full Text] [Related]
7. Enrichment of sulfur-oxidizing bacteria using S-doped NiFe Li J; Yao C; Song B; Zhang Z; Brock AL; Trapp S; Zhang J Sci Total Environ; 2022 Oct; 844():156973. PubMed ID: 35772559 [TBL] [Abstract][Full Text] [Related]
8. Recovery of elemental sulfur with a novel integrated bioelectrochemical system with an electrochemical cell. Blázquez E; Gabriel D; Baeza JA; Guisasola A; Freguia S; Ledezma P Sci Total Environ; 2019 Aug; 677():175-183. PubMed ID: 31055098 [TBL] [Abstract][Full Text] [Related]
9. Microbial fuel cells for sulfide removal. Rabaey K; Van de Sompel K; Maignien L; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Pham HT; Vermeulen J; Verhaege M; Lens P; Verstraete W Environ Sci Technol; 2006 Sep; 40(17):5218-24. PubMed ID: 16999092 [TBL] [Abstract][Full Text] [Related]
10. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. Sun M; Tong ZH; Sheng GP; Chen YZ; Zhang F; Mu ZX; Wang HL; Zeng RJ; Liu XW; Yu HQ; Wei L; Ma F Biosens Bioelectron; 2010 Oct; 26(2):470-6. PubMed ID: 20692154 [TBL] [Abstract][Full Text] [Related]
11. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Sun M; Mu ZX; Chen YP; Sheng GP; Liu XW; Chen YZ; Zhao Y; Wang HL; Yu HQ; Wei L; Ma F Environ Sci Technol; 2009 May; 43(9):3372-7. PubMed ID: 19534160 [TBL] [Abstract][Full Text] [Related]
12. Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater. Zhang L; Mao Y; Ma J; Li D; Shi H; Liu Y; Cai L Environ Technol; 2013; 34(1-4):269-74. PubMed ID: 23530340 [TBL] [Abstract][Full Text] [Related]
13. Implementation of a Sulfide-Air Fuel Cell Coupled to a Sulfate-Reducing Biocathode for Elemental Sulfur Recovery. Blázquez E; Gabriel D; Baeza JA; Guisasola A; Ledezma P; Freguia S Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34071068 [TBL] [Abstract][Full Text] [Related]
14. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery. Blázquez E; Gabriel D; Baeza JA; Guisasola A Water Res; 2016 Nov; 105():395-405. PubMed ID: 27662048 [TBL] [Abstract][Full Text] [Related]
15. Adaptability of sulfur-disproportionating bacteria for mine water remediation under the pressures of heavy metal ions and high sulfate content. Qiu YY; Zou J; Xia J; Li H; Zhen Y; Yang Y; Guo J; Zhang L; Qiu R; Jiang F Water Res; 2024 Feb; 249():120898. PubMed ID: 38086206 [TBL] [Abstract][Full Text] [Related]
16. Sulfate reduction and elemental sulfur recovery using photoelectric microbial electrolysis cell. Luo H; Bai J; He J; Liu G; Lu Y; Zhang R; Zeng C Sci Total Environ; 2020 Aug; 728():138685. PubMed ID: 32361113 [TBL] [Abstract][Full Text] [Related]
17. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells. Seo Y; Kang H; Chang S; Lee YY; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):13-24. PubMed ID: 29035628 [TBL] [Abstract][Full Text] [Related]
18. Promoted Sb removal with hydrogen production in microbial electrolysis cell by ZIF-67-derived modified sulfate-reducing bacteria bio-cathode. Dai J; Huang Z; Zhang H; Shi H; Arulmani SRB; Liu X; Huang L; Yan J; Xiao T Sci Total Environ; 2023 Jan; 856(Pt 1):158839. PubMed ID: 36155030 [TBL] [Abstract][Full Text] [Related]
19. Treatment of real flue gas desulfurization wastewater in an autotrophic biocathode in view of elemental sulfur recovery: Microbial communities involved. Blázquez E; Baeza JA; Gabriel D; Guisasola A Sci Total Environ; 2019 Mar; 657():945-952. PubMed ID: 30677960 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Cai J; Zheng P Bioresour Technol; 2013 Jan; 128():760-4. PubMed ID: 23186689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]