These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35636881)
1. Impact of climate change on Helicoverpa armigera voltinism in different Agro-Climatic Zones of India. Bapatla KG; Singh AD; Sengottaiyan V; Korada RR; Yeddula S J Therm Biol; 2022 May; 106():103229. PubMed ID: 35636881 [TBL] [Abstract][Full Text] [Related]
2. Pest scenario of Helicoverpa armigera (Hub.) on pigeonpea during future climate change periods under RCP based projections in India. Srinivasa Rao M; Rama Rao CA; Raju BMK; Subba Rao AVM; Gayatri DLA; Islam A; Prasad TV; Navya M; Srinivas K; Pratibha G; Srinivas I; Prabhakar M; Yadav SK; Bhaskar S; Singh VK; Chaudhari SK Sci Rep; 2023 Apr; 13(1):6788. PubMed ID: 37100788 [TBL] [Abstract][Full Text] [Related]
3. Spatio-temporal temperature variations in MarkSim multimodel data and their impact on voltinism of fruit fly, Bactrocera species on mango. Choudhary JS; Mali SS; Mukherjee D; Kumari A; Moanaro L; Rao MS; Das B; Singh AK; Bhatt BP Sci Rep; 2019 Jul; 9(1):9708. PubMed ID: 31273224 [TBL] [Abstract][Full Text] [Related]
4. Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Huang J; Li J Int J Biometeorol; 2015 Jul; 59(7):863-76. PubMed ID: 25239518 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Helicoverpa armigera spatial distribution in pigeonpea crop using geostatistical methods. Seethalam M; Bapatla KG; Kumar M; Nisa S; Chandra P; Mathyam P; Sengottaiyan V Pest Manag Sci; 2021 Nov; 77(11):4942-4950. PubMed ID: 34176225 [TBL] [Abstract][Full Text] [Related]
6. Pest scenario of Spodoptera litura (Fab.) on groundnut under representative concentration pathways (RCPs) based climate change scenarios. Srinivasa Rao M; Rama Rao CA; Sreelakshmi P; Islam A; Subba Rao AVM; Ravindra Chary G; Bhaskar S J Therm Biol; 2020 Dec; 94():102749. PubMed ID: 33292990 [TBL] [Abstract][Full Text] [Related]
7. Temperature-dependent development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and its larval parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae): implications for species interactions. Noor-Ul-Ane M; Ali Mirhosseini M; Crickmore N; Saeed S; Noor I; Zalucki MP Bull Entomol Res; 2018 Jun; 108(3):295-304. PubMed ID: 28835290 [TBL] [Abstract][Full Text] [Related]
8. Effects of climate change and crop planting structure on the abundance of cotton bollworm, Huang J; Hao H Ecol Evol; 2020 Feb; 10(3):1324-1338. PubMed ID: 32076517 [TBL] [Abstract][Full Text] [Related]
9. Development, survivorship and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under fluctuating temperatures. Mironidis GK Bull Entomol Res; 2014 Dec; 104(6):751-64. PubMed ID: 25208831 [TBL] [Abstract][Full Text] [Related]
10. Yield, water, and carbon footprint of rainfed rice production under the lens of mid-century climate change: a case study in the eastern coastal agro-climatic zone, Odisha, India. Behera SS; Ojha CSP; Prasad KSH; Dash SS Environ Monit Assess; 2023 Apr; 195(5):544. PubMed ID: 37017873 [TBL] [Abstract][Full Text] [Related]
11. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Huang J Int J Biometeorol; 2016 Jul; 60(7):977-89. PubMed ID: 26514355 [TBL] [Abstract][Full Text] [Related]
12. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
13. Host plant use of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Brazilian agricultural landscape. Dourado PM; Pantoja-Gomez LM; Horikoshi RJ; Carvalho RA; Omoto C; Corrêa AS; Kim JH; Martinelli S; Head GP Pest Manag Sci; 2021 Feb; 77(2):780-794. PubMed ID: 32902104 [TBL] [Abstract][Full Text] [Related]
14. The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods. Sampaio F; Krechemer FS; Marchioro CA J Therm Biol; 2021 May; 98():102946. PubMed ID: 34016363 [TBL] [Abstract][Full Text] [Related]
15. Effects of climate change on different geographical populations of the cotton bollworm Huang J Ecol Evol; 2021 Dec; 11(24):18357-18368. PubMed ID: 35003678 [TBL] [Abstract][Full Text] [Related]
16. Temperature- and CO2-dependent life table parameters of Spodoptera litura (Noctuidae: Lepidoptera) on sunflower and prediction of pest scenarios. Manimanjari D; Srinivasa Rao M; Swathi P; Rama Rao CA; Vanaja M; Maheswari M J Insect Sci; 2014; 14():. PubMed ID: 25528748 [TBL] [Abstract][Full Text] [Related]
17. Changes in spatio-temporal distribution of AgMERRA-derived agro-climatic indices and agro-climatic zones for wheat crops in the northeast Iran. Yaghoubi F; Bannayan M; Asadi GA Int J Biometeorol; 2022 Mar; 66(3):431-446. PubMed ID: 34236505 [TBL] [Abstract][Full Text] [Related]
18. Selection of models to describe the temperature-dependent development of Santos HTD; Marchioro CA Bull Entomol Res; 2021 Aug; 111(4):476-484. PubMed ID: 33814025 [TBL] [Abstract][Full Text] [Related]