These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Requirement of Gamma-Carboxyglutamic Acid Modification and Phosphatidylserine Binding for the Activation of Tyro3, Axl, and Mertk Receptors by Growth Arrest-Specific 6. Geng K; Kumar S; Kimani SG; Kholodovych V; Kasikara C; Mizuno K; Sandiford O; Rameshwar P; Kotenko SV; Birge RB Front Immunol; 2017; 8():1521. PubMed ID: 29176978 [TBL] [Abstract][Full Text] [Related]
4. Targeted degradation of MERTK and other TAM receptor paralogs by heterobifunctional targeted protein degraders. Gadiyar V; Patel G; Chen J; Vigil D; Ji N; Campbell V; Sharma K; Shi Y; Weiss MM; Birge RB; Davra V Front Immunol; 2023; 14():1135373. PubMed ID: 37545504 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Mertk Surface Expression via ADAM17 and γ-Secretase Proteolytic Processing. Lahey KC; Varsanyi C; Wang Z; Aquib A; Gadiyar V; Rodrigues AA; Pulica R; Desind S; Davra V; Calianese DC; Liu D; Cho JH; Kotenko SV; De Lorenzo MS; Birge RB Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673989 [TBL] [Abstract][Full Text] [Related]
6. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Myers KV; Amend SR; Pienta KJ Mol Cancer; 2019 May; 18(1):94. PubMed ID: 31088471 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of MERTK receptor tyrosine kinase in epithelial cancer cells drives efferocytosis in a gain-of-function capacity. Nguyen KQ; Tsou WI; Calarese DA; Kimani SG; Singh S; Hsieh S; Liu Y; Lu B; Wu Y; Garforth SJ; Almo SC; Kotenko SV; Birge RB J Biol Chem; 2014 Sep; 289(37):25737-49. PubMed ID: 25074939 [TBL] [Abstract][Full Text] [Related]
8. Post-translational modifications of the ligands: Requirement for TAM receptor activation. Geng K Int Rev Cell Mol Biol; 2020; 357():35-55. PubMed ID: 33234244 [TBL] [Abstract][Full Text] [Related]
9. TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti-PD-1 Therapy in Melanoma. Holtzhausen A; Harris W; Ubil E; Hunter DM; Zhao J; Zhang Y; Zhang D; Liu Q; Wang X; Graham DK; Frye SV; Earp HS Cancer Immunol Res; 2019 Oct; 7(10):1672-1686. PubMed ID: 31451482 [TBL] [Abstract][Full Text] [Related]
10. Axl and Mertk Receptors Cooperate to Promote Breast Cancer Progression by Combined Oncogenic Signaling and Evasion of Host Antitumor Immunity. Davra V; Kumar S; Geng K; Calianese D; Mehta D; Gadiyar V; Kasikara C; Lahey KC; Chang YJ; Wichroski M; Gao C; De Lorenzo MS; Kotenko SV; Bergsbaken T; Mishra PK; Gause WC; Quigley M; Spires TE; Birge RB Cancer Res; 2021 Feb; 81(3):698-712. PubMed ID: 33239426 [TBL] [Abstract][Full Text] [Related]
11. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. Ghosh Roy S Int Rev Cell Mol Biol; 2020; 357():81-122. PubMed ID: 33234246 [TBL] [Abstract][Full Text] [Related]
12. TAM-ing T cells in the tumor microenvironment: implications for TAM receptor targeting. Peeters MJW; Rahbech A; Thor Straten P Cancer Immunol Immunother; 2020 Feb; 69(2):237-244. PubMed ID: 31664482 [TBL] [Abstract][Full Text] [Related]
13. Expression of the vitamin K-dependent proteins GAS6 and protein S and the TAM receptor tyrosine kinases in human atherosclerotic carotid plaques. Hurtado B; Muñoz X; Recarte-Pelz P; García N; Luque A; Krupinski J; Sala N; García de Frutos P Thromb Haemost; 2011 May; 105(5):873-82. PubMed ID: 21384080 [TBL] [Abstract][Full Text] [Related]
14. The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. Shafit-Zagardo B; Gruber RC; DuBois JC Pharmacol Ther; 2018 Aug; 188():97-117. PubMed ID: 29514053 [TBL] [Abstract][Full Text] [Related]
15. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. Tsou WI; Nguyen KQ; Calarese DA; Garforth SJ; Antes AL; Smirnov SV; Almo SC; Birge RB; Kotenko SV J Biol Chem; 2014 Sep; 289(37):25750-63. PubMed ID: 25074926 [TBL] [Abstract][Full Text] [Related]
16. Tyro3, Axl, and Mertk receptors differentially participate in platelet activation and thrombus formation. Zhou J; Yang A; Wang Y; Chen F; Zhao Z; Davra V; Suzuki-Inoue K; Ozaki Y; Birge RB; Lu Q; Wu Y Cell Commun Signal; 2018 Dec; 16(1):98. PubMed ID: 30541554 [TBL] [Abstract][Full Text] [Related]
17. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. Lew ED; Oh J; Burrola PG; Lax I; Zagórska A; Través PG; Schlessinger J; Lemke G Elife; 2014 Sep; 3():. PubMed ID: 25265470 [TBL] [Abstract][Full Text] [Related]
18. Galectin-3 Stimulates Tyro3 Receptor Tyrosine Kinase and Erk Signalling, Cell Survival and Migration in Human Cancer Cells. Al Kafri N; Hafizi S Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32664510 [TBL] [Abstract][Full Text] [Related]
19. MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation. Nishi C; Yanagihashi Y; Segawa K; Nagata S J Biol Chem; 2019 May; 294(18):7221-7230. PubMed ID: 30846565 [TBL] [Abstract][Full Text] [Related]
20. Immunological role of TAM receptors in the cancer microenvironment. Gadiyar V; Patel G; Davra V Int Rev Cell Mol Biol; 2020; 357():57-79. PubMed ID: 33234245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]