BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35637065)

  • 1. Human epiblast lumenogenesis: From a cell aggregate to a lumenal cyst.
    Carleton AE; Duncan MC; Taniguchi K
    Semin Cell Dev Biol; 2022 Nov; 131():117-123. PubMed ID: 35637065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apical polarization and lumenogenesis: The apicosome sheds new light.
    Romero-Morales AI; Ortolano NA; Gama V
    J Cell Biol; 2017 Dec; 216(12):3891-3893. PubMed ID: 29138252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells.
    Schindler M; Siriwardena D; Kohler TN; Ellermann AL; Slatery E; Munger C; Hollfelder F; Boroviak TE
    Stem Cell Reports; 2021 May; 16(5):1347-1362. PubMed ID: 33979603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An apicosome initiates self-organizing morphogenesis of human pluripotent stem cells.
    Taniguchi K; Shao Y; Townshend RF; Cortez CL; Harris CE; Meshinchi S; Kalantry S; Fu J; O'Shea KS; Gumucio DL
    J Cell Biol; 2017 Dec; 216(12):3981-3990. PubMed ID: 29021220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-assisted imaging analysis of a human epiblast model.
    Resto Irizarry AM; Esfahani SN; Zheng Y; Yan RZ; Kinnunen P; Fu J
    Integr Biol (Camb); 2021 Oct; 13(9):221-229. PubMed ID: 34327532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model.
    Indana D; Zakharov A; Lim Y; Dunn AR; Bhutani N; Shenoy VB; Chaudhuri O
    Cell Stem Cell; 2024 May; 31(5):640-656.e8. PubMed ID: 38701758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation.
    Bedzhov I; Zernicka-Goetz M
    Cell; 2014 Feb; 156(5):1032-44. PubMed ID: 24529478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rap1 controls epiblast morphogenesis in sync with the pluripotency states transition.
    Kim YS; Fan R; Lith SC; Dicke AK; Drexler HCA; Kremer L; Kuempel-Rink N; Hekking L; Stehling M; Bedzhov I
    Dev Cell; 2022 Aug; 57(16):1937-1956.e8. PubMed ID: 35998584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of Mouse Epiblast Stem Cells.
    Osteil P
    Methods Mol Biol; 2022; 2490():3-9. PubMed ID: 35486234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states.
    Morgani S; Nichols J; Hadjantonakis AK
    BMC Dev Biol; 2017 Jun; 17(1):7. PubMed ID: 28610558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation.
    Ryan AQ; Chan CJ; Graner F; Hiiragi T
    Dev Cell; 2019 Dec; 51(6):684-697.e4. PubMed ID: 31735667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation.
    Dokmegang J; Yap MH; Han L; Cavaliere M; Doursat R
    PLoS One; 2021; 16(7):e0254763. PubMed ID: 34320001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epiblast stem cells contribute new insight into pluripotency and gastrulation.
    Chenoweth JG; McKay RD; Tesar PJ
    Dev Growth Differ; 2010 Apr; 52(3):293-301. PubMed ID: 20298258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The exploration of pluripotency space: Charting cell state transitions in peri-implantation development.
    Pera MF; Rossant J
    Cell Stem Cell; 2021 Nov; 28(11):1896-1906. PubMed ID: 34672948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Presence or Absence of Alkaline Phosphatase Activity to Discriminate Pluripotency Characteristics in Porcine Epiblast Stem Cell-Like Cells.
    Baek SK; Jeon SB; Seo BG; Hwangbo C; Shin KC; Choi JW; An CS; Jeong MA; Kim TS; Lee JH
    Cell Reprogram; 2021 Aug; 23(4):221-238. PubMed ID: 34227846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells.
    Fröhlich T; Kösters M; Graf A; Wolf E; Kobolak J; Brochard V; Dinnyés A; Jouneau A; Arnold GJ
    J Proteomics; 2013 Sep; 90():38-51. PubMed ID: 23603003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microengineered human amniotic ectoderm tissue array for high-content developmental phenotyping.
    Nasr Esfahani S; Shao Y; Resto Irizarry AM; Li Z; Xue X; Gumucio DL; Fu J
    Biomaterials; 2019 Sep; 216():119244. PubMed ID: 31207406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive Elimination of Unspecified Cells.
    Hashimoto M; Sasaki H
    Dev Cell; 2019 Jul; 50(2):139-154.e5. PubMed ID: 31204175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrin and dystroglycan compensate each other to mediate laminin-dependent basement membrane assembly and epiblast polarization.
    Li S; Qi Y; McKee K; Liu J; Hsu J; Yurchenco PD
    Matrix Biol; 2017 Jan; 57-58():272-284. PubMed ID: 27449702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo.
    Schmaltz-Panneau B; Jouneau L; Osteil P; Tapponnier Y; Afanassieff M; Moroldo M; Jouneau A; Daniel N; Archilla C; Savatier P; Duranthon V
    Anim Reprod Sci; 2014 Sep; 149(1-2):67-79. PubMed ID: 25059199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.