BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35637229)

  • 1. Graphene nanoribbons initiated from molecularly derived seeds.
    Way AJ; Jacobberger RM; Guisinger NP; Saraswat V; Zheng X; Suresh A; Dwyer JH; Gopalan P; Arnold MS
    Nat Commun; 2022 May; 13(1):2992. PubMed ID: 35637229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seed-Initiated Anisotropic Growth of Unidirectional Armchair Graphene Nanoribbon Arrays on Germanium.
    Way AJ; Jacobberger RM; Arnold MS
    Nano Lett; 2018 Feb; 18(2):898-906. PubMed ID: 29382200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment of semiconducting graphene nanoribbons on vicinal Ge(001).
    Jacobberger RM; Murray EA; Fortin-Deschênes M; Göltl F; Behn WA; Krebs ZJ; Levesque PL; Savage DE; Smoot C; Lagally MG; Desjardins P; Martel R; Brar V; Moutanabbir O; Mavrikakis M; Arnold MS
    Nanoscale; 2019 Mar; 11(11):4864-4875. PubMed ID: 30821309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium.
    Jacobberger RM; Arnold MS
    ACS Nano; 2017 Sep; 11(9):8924-8929. PubMed ID: 28880526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic Synthesis of Armchair Graphene Nanoribbon Arrays from Sub-5 nm Seeds at Variable Pitches on Germanium.
    Way AJ; Murray EA; Göltl F; Saraswat V; Jacobberger RM; Mavrikakis M; Arnold MS
    J Phys Chem Lett; 2019 Aug; 10(15):4266-4272. PubMed ID: 31287706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct oriented growth of armchair graphene nanoribbons on germanium.
    Jacobberger RM; Kiraly B; Fortin-Deschenes M; Levesque PL; McElhinny KM; Brady GJ; Rojas Delgado R; Singha Roy S; Mannix A; Lagally MG; Evans PG; Desjardins P; Martel R; Hersam MC; Guisinger NP; Arnold MS
    Nat Commun; 2015 Aug; 6():8006. PubMed ID: 26258594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.
    Sokolov AN; Yap FL; Liu N; Kim K; Ci L; Johnson OB; Wang H; Vosgueritchian M; Koh AL; Chen J; Park J; Bao Z
    Nat Commun; 2013; 4():2402. PubMed ID: 23989553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable transport gap in narrow bilayer graphene nanoribbons.
    Yu WJ; Duan X
    Sci Rep; 2013; 3():1248. PubMed ID: 23409239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons.
    Liang X; Wi S
    ACS Nano; 2012 Nov; 6(11):9700-10. PubMed ID: 23078122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.
    Bilić A; Sanvito S
    J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-10 nm Graphene Nanoribbon Array field-effect transistors fabricated by block copolymer lithography.
    Son JG; Son M; Moon KJ; Lee BH; Myoung JM; Strano MS; Ham MH; Ross CA
    Adv Mater; 2013 Sep; 25(34):4723-8. PubMed ID: 23798365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I; Celis A; Nair MN; Gloter A; Zobelli A; Sicot M; Malterre D; Nevius MS; de Heer WA; Berger C; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2015 Jan; 15(1):182-9. PubMed ID: 25457853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deriving MoS
    Yang C; Wang B; Xie Y; Zheng Y; Jin C
    Nanotechnology; 2019 Jun; 30(25):255602. PubMed ID: 30802894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene.
    Solís-Fernández P; Yoshida K; Ogawa Y; Tsuji M; Ago H
    Adv Mater; 2013 Dec; 25(45):6562-8. PubMed ID: 24030892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars.
    Kato T; Hatakeyama R
    Nat Nanotechnol; 2012 Oct; 7(10):651-6. PubMed ID: 22961304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating atomic structure and transport in suspended graphene nanoribbons.
    Qi ZJ; Rodríguez-Manzo JA; Botello-Méndez AR; Hong SJ; Stach EA; Park YW; Charlier JC; Drndić M; Johnson AT
    Nano Lett; 2014 Aug; 14(8):4238-44. PubMed ID: 24954396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.