BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35637786)

  • 1. Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks.
    Ekberg V; Samways ML; Misini Ignjatović M; Essex JW; Ryde U
    ACS Phys Chem Au; 2022 May; 2(3):247-259. PubMed ID: 35637786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS).
    Jiang W
    J Chem Theory Comput; 2019 Apr; 15(4):2179-2186. PubMed ID: 30821969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.
    Ross GA; Russell E; Deng Y; Lu C; Harder ED; Abel R; Wang L
    J Chem Theory Comput; 2020 Oct; 16(10):6061-6076. PubMed ID: 32955877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD.
    Barhaghi MS; Crawford B; Schwing G; Hardy DJ; Stone JE; Schwiebert L; Potoff J; Tajkhorshid E
    J Chem Theory Comput; 2022 Aug; 18(8):4983-4994. PubMed ID: 35621307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
    Ge Y; Wych DC; Samways ML; Wall ME; Essex JW; Mobley DL
    J Chem Theory Comput; 2022 Mar; 18(3):1359-1381. PubMed ID: 35148093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.
    Nguyen CN; Young TK; Gilson MK
    J Chem Phys; 2012 Jul; 137(4):044101. PubMed ID: 22852591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.
    Sun D; Lakkaraju SK; Jo S; MacKerell AD
    J Chem Theory Comput; 2018 Oct; 14(10):5290-5302. PubMed ID: 30183291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules.
    Wahl J; Smieško M
    J Chem Inf Model; 2019 Feb; 59(2):754-765. PubMed ID: 30640456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome.
    Ge X; Roux B
    J Phys Chem B; 2010 Jul; 114(29):9525-39. PubMed ID: 20608691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.
    Lakkaraju SK; Raman EP; Yu W; MacKerell AD
    J Chem Theory Comput; 2014 Jun; 10(6):2281-2290. PubMed ID: 24932136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations.
    Wahl J; Smieško M
    ChemMedChem; 2018 Jul; 13(13):1325-1335. PubMed ID: 29726604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replica-Exchange and Standard State Binding Free Energies with Grand Canonical Monte Carlo.
    Ross GA; Bruce Macdonald HE; Cave-Ayland C; Cabedo Martinez AI; Essex JW
    J Chem Theory Comput; 2017 Dec; 13(12):6373-6381. PubMed ID: 29091438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
    Melling OJ; Samways ML; Ge Y; Mobley DL; Essex JW
    J Chem Theory Comput; 2023 Feb; 19(3):1050-1062. PubMed ID: 36692215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory.
    Chen L; Cruz A; Roe DR; Simmonett AC; Wickstrom L; Deng N; Kurtzman T
    J Chem Theory Comput; 2021 May; 17(5):2714-2724. PubMed ID: 33830762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Networks in Complexes between Proteins and FDA-Approved Drugs.
    Samways ML; Bruce Macdonald HE; Taylor RD; Essex JW
    J Chem Inf Model; 2023 Jan; 63(1):387-396. PubMed ID: 36469670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. grand: A Python Module for Grand Canonical Water Sampling in OpenMM.
    Samways ML; Bruce Macdonald HE; Essex JW
    J Chem Inf Model; 2020 Oct; 60(10):4436-4441. PubMed ID: 32835483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.