These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35638158)

  • 21. Quantitatively Mapping the Distribution of Intrinsic Acid Sites in Mordenite Zeolite by High-Field
    Fan B; Zhang W; Gao P; Hou G; Liu R; Xu S; Wei Y; Liu Z
    J Phys Chem Lett; 2022 Jun; ():5186-5194. PubMed ID: 35666100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology-Dependent Catalytic Performance of Mordenite in Carbonylation of Dimethyl Ether: Enhanced Activity with High
    Li Y; Li Z; Huang S; Cai K; Qu Z; Zhang J; Wang Y; Ma X
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24000-24005. PubMed ID: 31252464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zeolite-supported ultra-small nickel as catalyst for selective oxidation of methane to syngas.
    Yasuda S; Osuga R; Kunitake Y; Kato K; Fukuoka A; Kobayashi H; Gao M; Hasegawa JY; Manabe R; Shima H; Tsutsuminai S; Yokoi T
    Commun Chem; 2020 Sep; 3(1):129. PubMed ID: 36703370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst.
    Wang X; Qi G; Xu J; Li B; Wang C; Deng F
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3850-3. PubMed ID: 22389151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO.
    Boronat M; Martínez-Sánchez C; Law D; Corma A
    J Am Chem Soc; 2008 Dec; 130(48):16316-23. PubMed ID: 18986144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu-Exchanged Mordenite.
    Zheng J; Lee I; Khramenkova E; Wang M; Peng B; Gutiérrez OY; Fulton JL; Camaioni DM; Khare R; Jentys A; Haller GL; Pidko EA; Sanchez-Sanchez M; Lercher JA
    Chemistry; 2020 Jun; 26(34):7563-7567. PubMed ID: 32092206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation.
    Periana RA; Mironov O; Taube D; Bhalla G; Jones CJ
    Science; 2003 Aug; 301(5634):814-8. PubMed ID: 12907796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group.
    Adeyiga O; Odoh SO
    Chemphyschem; 2021 Jun; 22(11):1101-1109. PubMed ID: 33786957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge-separation driven mechanism via acylium ion intermediate migration during catalytic carbonylation in mordenite zeolite.
    Chen W; Tarach KA; Yi X; Liu Z; Tang X; Góra-Marek K; Zheng A
    Nat Commun; 2022 Nov; 13(1):7106. PubMed ID: 36402761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Framework Effects on Activation and Functionalisation of Methane in Zinc-Exchanged Zeolites.
    Shah MA; Raynes S; Apperley DC; Taylor RA
    Chemphyschem; 2020 Apr; 21(7):673-679. PubMed ID: 31774616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis.
    Kang J; He S; Zhou W; Shen Z; Li Y; Chen M; Zhang Q; Wang Y
    Nat Commun; 2020 Feb; 11(1):827. PubMed ID: 32047150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single Chromium Atoms Supported on Titanium Dioxide Nanoparticles for Synergic Catalytic Methane Conversion under Mild Conditions.
    Shen Q; Cao C; Huang R; Zhu L; Zhou X; Zhang Q; Gu L; Song W
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1216-1219. PubMed ID: 31691469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective Methane Oxidation by Heterogenized Iridium Catalysts.
    Li H; Fei M; Troiano JL; Ma L; Yan X; Tieu P; Yuan Y; Zhang Y; Liu T; Pan X; Brudvig GW; Wang D
    J Am Chem Soc; 2023 Jan; 145(2):769-773. PubMed ID: 36594824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stepwise Iodide-Free Methanol Carbonylation via Methyl Acetate Activation by Pincer Iridium Complexes.
    Yoo C; Miller AJM
    J Am Chem Soc; 2021 Aug; 143(32):12633-12643. PubMed ID: 34347476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation.
    Vanelderen P; Snyder BE; Tsai ML; Hadt RG; Vancauwenbergh J; Coussens O; Schoonheydt RA; Sels BF; Solomon EI
    J Am Chem Soc; 2015 May; 137(19):6383-92. PubMed ID: 25914019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper Affects the Location of Zinc in Bimetallic Ion-Exchanged Mordenite.
    Reule AAC; Shen J; Semagina N
    Chemphyschem; 2018 Jun; 19(12):1500-1506. PubMed ID: 29575723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper-exchanged large-port and small-port mordenite (MOR) for methane-to-methanol conversion.
    Knorpp AJ; Pinar AB; Newton MA; Li T; Calbry-Muzyka A; van Bokhoven JA
    RSC Adv; 2021 Sep; 11(49):31058-31061. PubMed ID: 35498933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Evolution of Aluminum Coordination Environments in Mordenite Zeolite and Their Role in the Dimethyl Ether (DME) Carbonylation Reaction.
    Liu R; Fan B; Zhi Y; Liu C; Xu S; Yu Z; Liu Z
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202210658. PubMed ID: 35913045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects.
    Schwach P; Pan X; Bao X
    Chem Rev; 2017 Jul; 117(13):8497-8520. PubMed ID: 28475304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct and remarkably efficient conversion of methane into acetic acid catalyzed by amavadine and related vanadium complexes. A synthetic and a theoretical DFT mechanistic study.
    Kirillova MV; Kuznetsov ML; Reis PM; da Silva JA; da Silva JJ; Pombeiro AJ
    J Am Chem Soc; 2007 Aug; 129(34):10531-45. PubMed ID: 17676842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.