BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35638170)

  • 1. A High-Valent Ru-PCP Pincer Catalyst for Hydrogenation of Carbonyl and Carboxyl Compounds under Molecular Hydrogen.
    Mujahed S; Hey-Hawkins E; Gelman D
    Chemistry; 2022 Jul; 28(38):e202201098. PubMed ID: 35638170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Ligand Cooperation with Thiols as Transient Cooperative Ligands: Acceleration and Inhibition Effects in (De)Hydrogenation Reactions.
    Luo J; Montag M; Milstein D
    Acc Chem Res; 2024 Jun; 57(12):1709-1721. PubMed ID: 38833580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and
    Liang Y; Luo J; Diskin-Posner Y; Milstein D
    J Am Chem Soc; 2023 Apr; 145(16):9164-9175. PubMed ID: 37068165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System with potential dual modes of metal-ligand cooperation: highly catalytically active pyridine-based PNNH-Ru pincer complexes.
    Fogler E; Garg JA; Hu P; Leitus G; Shimon LJ; Milstein D
    Chemistry; 2014 Nov; 20(48):15727-31. PubMed ID: 25331061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative Catalysis at Metal-Sulfur Bonds.
    Omann L; Königs CDF; Klare HFT; Oestreich M
    Acc Chem Res; 2017 May; 50(5):1258-1269. PubMed ID: 28406290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of Bifunctional PNP-Pincer Ligands on Low Valent Cobalt Complexes Relevant to CO
    Mills MR; Barnes CL; Bernskoetter WH
    Inorg Chem; 2018 Feb; 57(3):1590-1597. PubMed ID: 29350924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal-Ligand Cooperativity Enables Selective Alkyne Hydrogenation.
    Tseng KN; Kampf JW; Szymczak NK
    J Am Chem Soc; 2016 Aug; 138(33):10378-81. PubMed ID: 27472301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory-Based Extension of the Catalyst Scope in the Base-Catalyzed Hydrogenation of Ketones: RCOOH-Catalyzed Hydrogenation of Carbonyl Compounds with H
    Heshmat M; Privalov T
    Chemistry; 2017 Dec; 23(72):18193-18202. PubMed ID: 28981175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Ligand Cooperation Facilitates Bond Activation and Catalytic Hydrogenation with Zinc Pincer Complexes.
    Rauch M; Kar S; Kumar A; Avram L; Shimon LJW; Milstein D
    J Am Chem Soc; 2020 Aug; 142(34):14513-14521. PubMed ID: 32786799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT Study of Acceptorless Alcohol Dehydrogenation Mediated by Ruthenium Pincer Complexes: Ligand Tautomerization Governing Metal Ligand Cooperation.
    Hou C; Zhang Z; Zhao C; Ke Z
    Inorg Chem; 2016 Jul; 55(13):6539-51. PubMed ID: 27322755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Dioxide Hydrogenation to Formate Catalyzed by a Neutral, Coordinatively Saturated Tris-Carbonyl Mn(I)-PNP Pincer-Type Complex.
    Kostera S; Manca G; Gonsalvi L
    Chemistry; 2023 Dec; 29(70):e202302642. PubMed ID: 37720981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application.
    Wang Y; Zhu L; Shao Z; Li G; Lan Y; Liu Q
    J Am Chem Soc; 2019 Oct; 141(43):17337-17349. PubMed ID: 31633346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism investigation of ketone hydrogenation catalyzed by ruthenium bifunctional catalysts: insights from a DFT study.
    Zhang X; Guo X; Chen Y; Tang Y; Lei M; Fang W
    Phys Chem Chem Phys; 2012 May; 14(17):6003-12. PubMed ID: 22441438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Prediction of Proton-Catalyzed Hydrogenation of Ketones in Lewis Basic Solvent through Facile Splitting of Hydrogen Molecules.
    Heshmat M; Privalov T
    Chemistry; 2017 Jan; 23(5):1036-1039. PubMed ID: 27883245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study.
    Chen HY; Di Tommaso D; Hogarth G; Catlow CR
    Dalton Trans; 2011 Jan; 40(2):402-12. PubMed ID: 21103602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation of Terminal Alkenes Catalyzed by Air-Stable Mn(I) Complexes Bearing an N-Heterocyclic Carbene-Based PCP Pincer Ligand.
    Zobernig DP; Luxner M; Stöger B; Veiros LF; Kirchner K
    Chemistry; 2024 Jan; 30(4):e202302455. PubMed ID: 37814821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tailored Versatile and Efficient NHC-Based NNC-Pincer Manganese Catalyst for Hydrogenation of Polar Unsaturated Compounds.
    Wei Z; Li H; Wang Y; Liu Q
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202301042. PubMed ID: 37026439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.