These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35638187)

  • 1. Integrated animal movement and spatial capture-recapture models: Simulation, implementation, and inference.
    Gardner B; McClintock BT; Converse SJ; Hostetter NJ
    Ecology; 2022 Oct; 103(10):e3771. PubMed ID: 35638187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confronting spatial capture-recapture models with realistic animal movement simulations.
    Theng M; Milleret C; Bracis C; Cassey P; Delean S
    Ecology; 2022 Oct; 103(10):e3676. PubMed ID: 35253209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling spatiotemporal abundance and movement dynamics using an integrated spatial capture-recapture movement model.
    Hostetter NJ; Regehr EV; Wilson RR; Royle JA; Converse SJ
    Ecology; 2022 Oct; 103(10):e3772. PubMed ID: 35633152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated path for spatial capture-recapture and animal movement modeling.
    McClintock BT; Abrahms B; Chandler RB; Conn PB; Converse SJ; Emmet RL; Gardner B; Hostetter NJ; Johnson DS
    Ecology; 2022 Oct; 103(10):e3473. PubMed ID: 34270790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision and bias of spatial capture-recapture estimates: A multi-site, multi-year Utah black bear case study.
    Schmidt GM; Graves TA; Pederson JC; Carroll SL
    Ecol Appl; 2022 Jul; 32(5):e2618. PubMed ID: 35368131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications.
    Smith JB; Stevens BS; Etter DR; Williams DM
    PLoS One; 2020; 15(8):e0236978. PubMed ID: 32797083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved inferences about landscape connectivity from spatial capture-recapture by integration of a movement model.
    Dupont G; Linden DW; Sutherland C
    Ecology; 2022 Oct; 103(10):e3544. PubMed ID: 34626121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling abundance, distribution, movement and space use with camera and telemetry data.
    Chandler RB; Crawford DA; Garrison EP; Miller KV; Cherry MJ
    Ecology; 2022 Oct; 103(10):e3583. PubMed ID: 34767254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial capture-recapture model performance with known small-mammal densities.
    Gerber BD; Parmenter RR
    Ecol Appl; 2015 Apr; 25(3):695-705. PubMed ID: 26214915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multistate Langevin diffusion for inferring behavior-specific habitat selection and utilization distributions.
    McClintock BT; Lander ME
    Ecology; 2024 Jan; 105(1):e4186. PubMed ID: 37794831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spatial capture-recapture model for group-living species.
    Emmet RL; Augustine BC; Abrahms B; Rich LN; Gardner B
    Ecology; 2022 Oct; 103(10):e3576. PubMed ID: 34714927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible and efficient Bayesian implementation of point process models for spatial capture-recapture data.
    Zhang W; Chipperfield JD; Illian JB; Dupont P; Milleret C; de Valpine P; Bischof R
    Ecology; 2023 Jan; 104(1):e3887. PubMed ID: 36217822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation-based validation of spatial capture-recapture models: A case study using mountain lions.
    Paterson JT; Proffitt K; Jimenez B; Rotella J; Garrott R
    PLoS One; 2019; 14(4):e0215458. PubMed ID: 31002709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining Temporal Sample Scale and Model Choice with Spatial Capture-Recapture Models in the Common Leopard Panthera pardus.
    Goldberg JF; Tempa T; Norbu N; Hebblewhite M; Mills LS; Wangchuk TR; Lukacs P
    PLoS One; 2015; 10(11):e0140757. PubMed ID: 26536231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does spatial study design influence density estimates from spatial capture-recapture models?
    Sollmann R; Gardner B; Belant JL
    PLoS One; 2012; 7(4):e34575. PubMed ID: 22539949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders.
    Dorazio RM; Karanth KU
    PLoS One; 2017; 12(5):e0176966. PubMed ID: 28520796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A local evaluation of the individual state-space to scale up Bayesian spatial capture-recapture.
    Milleret C; Dupont P; Bonenfant C; Brøseth H; Flagstad Ø; Sutherland C; Bischof R
    Ecol Evol; 2019 Jan; 9(1):352-363. PubMed ID: 30680119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State space and movement specification in open population spatial capture-recapture models.
    Gardner B; Sollmann R; Kumar NS; Jathanna D; Karanth KU
    Ecol Evol; 2018 Oct; 8(20):10336-10344. PubMed ID: 30397470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement-assisted localization from acoustic telemetry data.
    Hostetter NJ; Royle JA
    Mov Ecol; 2020; 8():15. PubMed ID: 32617163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation.
    Muff S; Signer J; Fieberg J
    J Anim Ecol; 2020 Jan; 89(1):80-92. PubMed ID: 31454066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.