These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 35638417)
1. Structure-activity relationship data and ligand-receptor interactions identify novel agonists consistent with sulfakinin tissue-specific signaling in Nichols R; Bass C; Katanski C Front Biosci (Landmark Ed); 2022 May; 27(5):150. PubMed ID: 35638417 [TBL] [Abstract][Full Text] [Related]
2. The 5-amino acid N-terminal extension of non-sulfated drosulfakinin II is a unique target to generate novel agonists. Leander M; Heimonen J; Brocke T; Rasmussen M; Bass C; Palmer G; Egle J; Mispelon M; Berry K; Nichols R Peptides; 2016 Sep; 83():49-56. PubMed ID: 27397853 [TBL] [Abstract][Full Text] [Related]
3. The first nonsulfated sulfakinin activity reported suggests nsDSK acts in gut biology. Nichols R Peptides; 2007 Apr; 28(4):767-73. PubMed ID: 17292511 [TBL] [Abstract][Full Text] [Related]
4. Plasticity in the effects of sulfated and nonsulfated sulfakinin on heart contractions. Nichols R; Manoogian B; Walling E; Mispelon M Front Biosci (Landmark Ed); 2009 Jan; 14(11):4035-43. PubMed ID: 19273332 [TBL] [Abstract][Full Text] [Related]
5. Cloning and functional expression of the first Drosophila melanogaster sulfakinin receptor DSK-R1. Kubiak TM; Larsen MJ; Burton KJ; Bannow CA; Martin RA; Zantello MR; Lowery DE Biochem Biophys Res Commun; 2002 Feb; 291(2):313-20. PubMed ID: 11846406 [TBL] [Abstract][Full Text] [Related]
6. The different effects of structurally related sulfakinins on Drosophila melanogaster odor preference and locomotion suggest involvement of distinct mechanisms. Nichols R; Egle JP; Langan NR; Palmer GC Peptides; 2008 Dec; 29(12):2128-35. PubMed ID: 18786583 [TBL] [Abstract][Full Text] [Related]
7. The drosulfakinin 0 (DSK 0) peptide encoded in the conserved Dsk gene affects adult Drosophila melanogaster crop contractions. Palmer GC; Tran T; Duttlinger A; Nichols R J Insect Physiol; 2007 Nov; 53(11):1125-33. PubMed ID: 17632121 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. Nichols R; Schneuwly SA; Dixon JE J Biol Chem; 1988 Sep; 263(25):12167-70. PubMed ID: 2842322 [TBL] [Abstract][Full Text] [Related]
9. Spatial and temporal immunocytochemical analysis of drosulfakinin (Dsk) gene products in the Drosophila melanogaster central nervous system. Nichols R; Lim IA Cell Tissue Res; 1996 Jan; 283(1):107-16. PubMed ID: 8581950 [TBL] [Abstract][Full Text] [Related]
10. The myosuppressin structure-activity relationship for cardiac contractility and its receptor interactions support the presence of a ligand-directed signaling pathway in heart. Nichols R; Pittala K; Leander M; Maynard B; Nikolaou P; Marciniak P Peptides; 2021 Dec; 146():170641. PubMed ID: 34453985 [TBL] [Abstract][Full Text] [Related]
11. The structure of the FMRFamide receptor and activity of the cardioexcitatory neuropeptide are conserved in mosquito. Duttlinger A; Mispelon M; Nichols R Neuropeptides; 2003 Apr; 37(2):120-6. PubMed ID: 12747944 [TBL] [Abstract][Full Text] [Related]
12. Myotropic peptides in Drosophila melanogaster and the genes that encode them. Nichols R; Bendena WG; Tobe SS J Neurogenet; 2002; 16(1):1-28. PubMed ID: 12420787 [TBL] [Abstract][Full Text] [Related]
13. Structure-activity relationships of FMRF-NH2 peptides demonstrate A role for the conserved C terminus and unique N-terminal extension in modulating cardiac contractility. Maynard BF; Bass C; Katanski C; Thakur K; Manoogian B; Leander M; Nichols R PLoS One; 2013; 8(9):e75502. PubMed ID: 24069424 [TBL] [Abstract][Full Text] [Related]
14. Isolation and expression of the Drosophila drosulfakinin neural peptide gene product, DSK-I. Nichols R Mol Cell Neurosci; 1992 Aug; 3(4):342-7. PubMed ID: 19912877 [TBL] [Abstract][Full Text] [Related]
15. The sulfakinins of the blowfly Calliphora vomitoria. Peptide isolation, gene cloning and expression studies. Duve H; Thorpe A; Scott AG; Johnsen AH; Rehfeld JF; Hines E; East PD Eur J Biochem; 1995 Sep; 232(2):633-40. PubMed ID: 7556217 [TBL] [Abstract][Full Text] [Related]
16. Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila. Chen X; Peterson J; Nachman RJ; Ganetzky B Fly (Austin); 2012; 6(4):290-7. PubMed ID: 22885328 [TBL] [Abstract][Full Text] [Related]
17. Localisation of sulfakinin neuronal pathways in the blowfly Calliphora vomitoria. Duve H; Rehfeld JF; East P; Thorpe A Cell Tissue Res; 1994 Jan; 275(1):177-86. PubMed ID: 8118842 [TBL] [Abstract][Full Text] [Related]
18. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Agrawal P; Kao D; Chung P; Looger LL J Exp Biol; 2020 Jan; 223(Pt 2):. PubMed ID: 31900346 [TBL] [Abstract][Full Text] [Related]
19. Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides. Nichols R Annu Rev Entomol; 2003; 48():485-503. PubMed ID: 12414735 [TBL] [Abstract][Full Text] [Related]
20. Cardiac contractility structure-activity relationship and ligand-receptor interactions; the discovery of unique and novel molecular switches in myosuppressin signaling. Leander M; Bass C; Marchetti K; Maynard BF; Wulff JP; Ons S; Nichols R PLoS One; 2015; 10(3):e0120492. PubMed ID: 25793503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]