These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35638617)

  • 21. Facile synthesis of functional polyperoxides by radical alternating copolymerization of 1,3-dienes with oxygen.
    Sato E; Matsumoto A
    Chem Rec; 2009; 9(5):247-57. PubMed ID: 19927311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water.
    Baker MB; Gosens RP; Albertazzi L; Matsumoto NM; Palmans AR; Meijer EW
    Chembiochem; 2016 Feb; 17(3):207-13. PubMed ID: 26603687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction.
    Sun Q; Liu G; Wu H; Xue H; Zhao Y; Wang Z; Wei Y; Wang Z; Tao L
    ACS Macro Lett; 2017 May; 6(5):550-555. PubMed ID: 35610883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anticancer Activity of Cell-Penetrating Redox Phospholipid Polymers.
    Kaneko M; Ishikawa M; Nakanishi S; Ishihara K
    ACS Macro Lett; 2021 Jul; 10(7):926-932. PubMed ID: 35549201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Developments in Functional Polymers via the Kabachnik-Fields Reaction: The State of the Art.
    Yuan R; He X; Zhu C; Tao L
    Molecules; 2024 Feb; 29(3):. PubMed ID: 38338468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Throughput Preparation of Antibacterial Polymers from Natural Product Derivatives via the Hantzsch Reaction.
    Liu G; Zhang Q; Li Y; Wang X; Wu H; Wei Y; Zeng Y; Tao L
    iScience; 2020 Jan; 23(1):100754. PubMed ID: 31884171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the N1 Position of Biginelli Compounds: New Insights and Trends for Chemical Diversity Generation of Bioactive Derivatives.
    Gonçalves IL; das Neves GM; Kagami LP; Gonçalves GA; Davi L; Eifler-Lima VL
    Mini Rev Med Chem; 2022; 22(11):1545-1558. PubMed ID: 34711161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, parallel synthesis of Biginelli 1,4-dihydropyrimidines using PTSA as a catalyst, evaluation of anticancer activity and structure activity relationships via 3D QSAR studies.
    Faizan S; Prashantha Kumar BR; Lalitha Naishima N; Ashok T; Justin A; Vijay Kumar M; Bistuvalli Chandrashekarappa R; Manjunathaiah Raghavendra N; Kabadi P; Adhikary L
    Bioorg Chem; 2021 Dec; 117():105462. PubMed ID: 34753059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature.
    Dutta S; Parida S; Maiti C; Banerjee R; Mandal M; Dhara D
    J Colloid Interface Sci; 2016 Apr; 467():70-80. PubMed ID: 26773613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of Starch via the Biginelli Multicomponent Reaction.
    Esen E; Meier MAR
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900375. PubMed ID: 31517416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile Multicomponent Polymerization and Postpolymerization Modification via an Effective Meldrum's Acid-Based Three-Component Reaction.
    Meng QY; Gao F; Mosad S; Zhang Z; You YZ; Hong CY
    Macromol Rapid Commun; 2021 Mar; 42(6):e2000610. PubMed ID: 33345361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1
    Bosica G; Cachia F; De Nittis R; Mariotti N
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34202951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multicomponent reactions in polymer synthesis.
    Kakuchi R
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):46-8. PubMed ID: 24302633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients.
    Widanapathirana L; Tale S; Reineke TM
    Mol Pharm; 2015 Jul; 12(7):2537-43. PubMed ID: 26046484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy.
    Xin Y; Zhao H; Zhang J
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4971-4980. PubMed ID: 29333848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation.
    Cheng CC; Chang FC; Kao WY; Hwang SM; Liao LC; Chang YJ; Liang MC; Chen JK; Lee DJ
    Acta Biomater; 2016 Mar; 33():194-202. PubMed ID: 26796210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface active properties of polyoxyethylene macromonomers and their role in radical polymerization in disperse systems.
    Capek I
    Adv Colloid Interface Sci; 2000 Dec; 88(3):295-357. PubMed ID: 11130017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Shear Enhancement of Biginelli Reactions in Macromolecular Viscous Media.
    Bui AH; Rowlands NB; Fernando Pulle AD; Gibbs Medina SA; Rohrsheim TJ; Tuten BT
    Macromol Rapid Commun; 2024 Nov; 45(22):e2400490. PubMed ID: 39319676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition.
    Mammen M; Dahmann G; Whitesides GM
    J Med Chem; 1995 Oct; 38(21):4179-90. PubMed ID: 7473545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.