These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35638620)

  • 21. Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(ε-caprolactone) Networks and Enable Self-Healing.
    Farhan M; Rudolph T; Nöchel U; Kratz K; Lendlein A
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible Semicrystalline Polymer as Actuators Driven by Organic Solvent Vapor.
    Hou G; Wang F; Qu Z; Cheng Z; Zhang Y; Cai S; Xie T; Feng X
    Macromol Rapid Commun; 2018 Apr; 39(7):e1700716. PubMed ID: 29314371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.
    Chan BQ; Low ZW; Heng SJ; Chan SY; Owh C; Loh XJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10070-87. PubMed ID: 27018814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity.
    Ge Y; Wang H; Xue J; Jiang J; Liu Z; Liu Z; Li G; Zhao Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38773-38782. PubMed ID: 34369771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous Solid-State Plasticity of a Multi-Functional Metallo-Supramolecular Shape-Memory Polymer towards Arbitrary Shape Programming.
    Chen G; Chen D
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. External Stress-Free Reversible Multiple Shape Memory Polymers.
    Huang YN; Fan LF; Rong MZ; Zhang MQ; Gao YM
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31346-31355. PubMed ID: 31381290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomedical applications of thermally activated shape memory polymers.
    Small W; Singhal P; Wilson TS; Maitland DJ
    J Mater Chem; 2010 May; 20(18):3356-3366. PubMed ID: 21258605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shape memory polymers and their composites in biomedical applications.
    Zhao W; Liu L; Zhang F; Leng J; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():864-883. PubMed ID: 30678978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of Progress in Shape Memory Epoxies and Their Composites.
    Karger-Kocsis J; Kéki S
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nano/microstructures of shape memory polymers: from materials to applications.
    Zhang F; Xia Y; Liu Y; Leng J
    Nanoscale Horiz; 2020 Jul; 5(8):1155-1173. PubMed ID: 32567643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semicrystalline physical hydrogels with shape-memory and self-healing properties.
    Okay O
    J Mater Chem B; 2019 Mar; 7(10):1581-1596. PubMed ID: 32254903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water.
    Zhang B; DeBartolo JE; Song J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4450-4456. PubMed ID: 28125208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast IR-Actuated Shape-Memory Polymers Using in Situ Silver Nanoparticle-Grafted Cellulose Nanocrystals.
    Toncheva A; Khelifa F; Paint Y; Voué M; Lambert P; Dubois P; Raquez JM
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29933-29942. PubMed ID: 30092638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Printed Shape Memory Polymers Produced via Direct Pellet Extrusion.
    Cersoli T; Cresanto A; Herberger C; MacDonald E; Cortes P
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.
    Fang Y; Ni Y; Leo SY; Wang B; Basile V; Taylor C; Jiang P
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23650-9. PubMed ID: 26447681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-energy-density shape memory materials with ultrahigh strain for reconfigurable artificial muscles.
    Zheng X; Chen Y; Chen C; Chen Z; Guo Y; Li H; Liu H
    J Mater Chem B; 2021 Sep; 9(36):7371-7380. PubMed ID: 34551055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic Multimaterial Printing for Multimodal Shape Transformation with Tunable Properties and Shiftable Mechanical Behaviors.
    Ma C; Wu S; Ze Q; Kuang X; Zhang R; Qi HJ; Zhao R
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12639-12648. PubMed ID: 32897697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Very Simple Strategy for Preparing External Stress-Free Two-Way Shape Memory Polymers by Making Use of Hydrogen Bonds.
    Fan LF; Rong MZ; Zhang MQ; Chen XD
    Macromol Rapid Commun; 2018 Jun; 39(12):e1700714. PubMed ID: 29749065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.