These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35638633)
21. Chain dynamics of poly(ethylene-alt-propylene) melts by means of coarse-grained simulations based on atomistic molecular dynamics. Pérez-Aparicio R; Colmenero J; Alvarez F; Padding JT; Briels WJ J Chem Phys; 2010 Jan; 132(2):024904. PubMed ID: 20095706 [TBL] [Abstract][Full Text] [Related]
22. Decoupling salt- and polymer-dependent dynamics in polyelectrolyte complex coacervates Morin FJ; Puppo ML; Laaser JE Soft Matter; 2021 Feb; 17(5):1223-1231. PubMed ID: 33331383 [TBL] [Abstract][Full Text] [Related]
23. Theory of polyelectrolyte complexation-Complex coacervates are self-coacervates. Delaney KT; Fredrickson GH J Chem Phys; 2017 Jun; 146(22):224902. PubMed ID: 29166038 [TBL] [Abstract][Full Text] [Related]
24. Simulation of nonlinear shear rheology of dilute salt-free polyelectrolyte solutions. Stoltz C; de Pablo JJ; Graham MD J Chem Phys; 2007 Mar; 126(12):124906. PubMed ID: 17411160 [TBL] [Abstract][Full Text] [Related]
25. Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications. Kwant AN; Es Sayed JS; Kamperman M; Burgess JK; Slebos DJ; Pouwels SD Adv Healthc Mater; 2024 Oct; ():e2402340. PubMed ID: 39352099 [TBL] [Abstract][Full Text] [Related]
26. Transient formation of multi-phase droplets caused by the addition of a folded protein into complex coacervates with an oppositely charged surface relative to the protein. Sakakibara N; Ura T; Mikawa T; Sugai H; Shiraki K Soft Matter; 2023 Jun; 19(25):4642-4650. PubMed ID: 37291907 [TBL] [Abstract][Full Text] [Related]
27. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates. Es Sayed J; Caïto C; Arunachalam A; Amirsadeghi A; van Westerveld L; Maret D; Mohamed Yunus RA; Calicchia E; Dittberner O; Portale G; Parisi D; Kamperman M Macromolecules; 2023 Aug; 56(15):5891-5904. PubMed ID: 37576476 [TBL] [Abstract][Full Text] [Related]
28. Interfacial energy of polypeptide complex coacervates measured via capillary adhesion. Priftis D; Farina R; Tirrell M Langmuir; 2012 Jun; 28(23):8721-9. PubMed ID: 22578030 [TBL] [Abstract][Full Text] [Related]
29. Controlling Complex Coacervation via Random Polyelectrolyte Sequences. Rumyantsev AM; Jackson NE; Yu B; Ting JM; Chen W; Tirrell MV; de Pablo JJ ACS Macro Lett; 2019 Oct; 8(10):1296-1302. PubMed ID: 35651159 [TBL] [Abstract][Full Text] [Related]
30. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. Lim C; Blocher McTigue WC ACS Biomater Sci Eng; 2024 Nov; 10(11):6766-6789. PubMed ID: 39423330 [TBL] [Abstract][Full Text] [Related]
31. Molecular and structural basis of low interfacial energy of complex coacervates in water. Jho Y; Yoo HY; Lin Y; Han S; Hwang DS Adv Colloid Interface Sci; 2017 Jan; 239():61-73. PubMed ID: 27499328 [TBL] [Abstract][Full Text] [Related]
32. Polyelectrolyte complexation of two oppositely charged symmetric polymers: A minimal theory. Mitra S; Kundagrami A J Chem Phys; 2023 Jan; 158(1):014904. PubMed ID: 36610965 [TBL] [Abstract][Full Text] [Related]
33. Tuning the underwater adhesiveness of antibacterial polysaccharides complex coacervates. Galland P; Iqbal MH; Favier D; Legros M; Schaaf P; Boulmedais F; Vahdati M J Colloid Interface Sci; 2024 May; 661():196-206. PubMed ID: 38301458 [TBL] [Abstract][Full Text] [Related]
34. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates. Li X; Erni P; van der Gucht J; de Vries R ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509 [TBL] [Abstract][Full Text] [Related]
35. Crossover from reptation to Rouse dynamics in the extended Rubinstein-Duke model. Drzewiński A; van Leeuwen JM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031802. PubMed ID: 18517409 [TBL] [Abstract][Full Text] [Related]
36. The coherent scattering function of the reptation model: simulations compared to theory. Baumgärtner A; Ebert U; Schäfer L Eur Phys J E Soft Matter; 2003 Oct; 12(2):303-319. PubMed ID: 15007666 [TBL] [Abstract][Full Text] [Related]
37. Crossover from reptation to Rouse dynamics in the cage model. Drzewiński A; van Leeuwen JM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061801. PubMed ID: 17280087 [TBL] [Abstract][Full Text] [Related]
38. Time-Ionic Strength Superposition: A Unified Description of Chain Relaxation Dynamics in Polyelectrolyte Complexes. Syed VMS; Srivastava S ACS Macro Lett; 2020 Jul; 9(7):1067-1073. PubMed ID: 35648617 [TBL] [Abstract][Full Text] [Related]
39. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate. Ali S; Prabhu VM Gels; 2018 Jan; 4(1):. PubMed ID: 30674787 [TBL] [Abstract][Full Text] [Related]
40. Accelerating Payload Release from Complex Coacervates through Mechanical Stimulation. Hatem WA; Lapitsky Y Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771888 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]