These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35638680)

  • 41. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals.
    Shenoi RA; Abbina S; Kizhakkedathu JN
    Biomacromolecules; 2016 Nov; 17(11):3683-3693. PubMed ID: 27750017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence-Controlled Copolymers Prepared via Entropy-Driven Ring-Opening Metathesis Polymerization.
    Weiss RM; Short AL; Meyer TY
    ACS Macro Lett; 2015 Sep; 4(9):1039-1043. PubMed ID: 35596443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization.
    Lin TP; Chang AB; Chen HY; Liberman-Martin AL; Bates CM; Voegtle MJ; Bauer CA; Grubbs RH
    J Am Chem Soc; 2017 Mar; 139(10):3896-3903. PubMed ID: 28221030
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Backbone-Degradable Polymers via Radical Copolymerizations of Pentafluorophenyl Methacrylate with Cyclic Ketene Acetal: Pendant Modification and Efficient Degradation by Alternating-Rich Sequence.
    Lai H; Ouchi M
    ACS Macro Lett; 2021 Oct; 10(10):1223-1228. PubMed ID: 35549050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradable PEGylated Protein Conjugates Utilizing RAFT Polymerization.
    Decker CG; Maynard HD
    Eur Polym J; 2015 Apr; 65():305-312. PubMed ID: 25937643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators.
    Shenoi RA; Lai BF; Kizhakkedathu JN
    Biomacromolecules; 2012 Oct; 13(10):3018-30. PubMed ID: 22920950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ru-Catalyzed Isomerization Provides Access to Alternating Copolymers via Ring-Opening Metathesis Polymerization.
    Tan L; Li G; Parker KA; Sampson NS
    Macromolecules; 2015 Jul; 48(14):4793-4800. PubMed ID: 26243969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amine-Catalyzed Chain Polymerization of Ethyl Glyoxylate from Alcohol and Thiol Initiators.
    Hewitt DRO; Grubbs RB
    ACS Macro Lett; 2021 Mar; 10(3):370-374. PubMed ID: 35549067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers.
    Fishman JM; Zwick DB; Kruger AG; Kiessling LL
    Biomacromolecules; 2019 Feb; 20(2):1018-1027. PubMed ID: 30608163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoinduced Strain-Assisted Synthesis of a Stiff-Stilbene Polymer by Ring-Opening Metathesis Polymerization.
    Krishnan BP; Xue L; Xiong X; Cui J
    Chemistry; 2020 Nov; 26(65):14828-14832. PubMed ID: 32533881
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crosslinked Polydicyclopentadiene Nanoparticles via Ring-Opening Metathesis Polymerization-Induced Self-Assembly Approach.
    Mei H; Zhao B; Wang H; Zheng S
    Macromol Rapid Commun; 2021 Jul; 42(14):e2100155. PubMed ID: 34057258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Backbone-Photodegradable Polymers by Incorporating Acylsilane Monomers via Ring-Opening Metathesis Polymerization.
    Huang B; Wei M; Vargo E; Qian Y; Xu T; Toste FD
    J Am Chem Soc; 2021 Nov; 143(43):17920-17925. PubMed ID: 34677051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of stereoregular polymers through ring-opening metathesis polymerization.
    Schrock RR
    Acc Chem Res; 2014 Aug; 47(8):2457-66. PubMed ID: 24905960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of functionalizable and degradable polymers by ring-opening metathesis polymerization.
    Fishman JM; Kiessling LL
    Angew Chem Int Ed Engl; 2013 May; 52(19):5061-4. PubMed ID: 23568693
    [No Abstract]   [Full Text] [Related]  

  • 55. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones.
    Song A; Walker SG; Parker KA; Sampson NS
    ACS Chem Biol; 2011 Jun; 6(6):590-9. PubMed ID: 21370918
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A General Approach to Sequence-Controlled Polymers Using Macrocyclic Ring Opening Metathesis Polymerization.
    Gutekunst WR; Hawker CJ
    J Am Chem Soc; 2015 Jul; 137(25):8038-41. PubMed ID: 26053158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of Zwitterionic and Trehalose Polymers with Variable Degradation Rates and Stabilization of Insulin.
    Pelegri-O'Day EM; Bhattacharya A; Theopold N; Ko JH; Maynard HD
    Biomacromolecules; 2020 Jun; 21(6):2147-2154. PubMed ID: 32369347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sugar-Based Polymers from d-Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release.
    Rizzo A; Peterson GI; Bhaumik A; Kang C; Choi TL
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):849-855. PubMed ID: 33067845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology.
    Cheng S; Zhao R; Seferos DS
    Acc Chem Res; 2021 Nov; 54(22):4203-4214. PubMed ID: 34726058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of hybrid block copolymers via integrated ring-opening metathesis polymerization and polymerization of NCA.
    Bai Y; Lu H; Ponnusamy E; Cheng J
    Chem Commun (Camb); 2011 Oct; 47(38):10830-2. PubMed ID: 21869956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.