These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35638681)

  • 1. Can We Push Rapid Reversible Deactivation Radical Polymerizations toward Immortality?
    Ballard N; Asua JM
    ACS Macro Lett; 2020 Feb; 9(2):190-196. PubMed ID: 35638681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation.
    Konkolewicz D; Krys P; Matyjaszewski K
    Acc Chem Res; 2014 Oct; 47(10):3028-36. PubMed ID: 25247603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Polymerization of Acrylamide via One-Pot and One-Step Aqueous Cu(0)-Mediated Reversible-Deactivation Radical Polymerization.
    Li Z; Lyu J; Li Y; Qiu B; Johnson M; Tai H; Wang W
    Macromolecules; 2023 Jul; 56(13):5111-5116. PubMed ID: 37457021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities.
    Kreutzer J; Yagci Y
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Thiyl Radical Addition-Fragmentation Chain Transfer Polymerization.
    Wang Y; Du J; Huang H
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202318898. PubMed ID: 38284482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Chain Length Distribution of an Ideal Reversible Deactivation Radical Polymerization.
    Harrisson S
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitous Nature of Rate Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Bradford KGE; Petit LM; Whitfield R; Anastasaki A; Barner-Kowollik C; Konkolewicz D
    J Am Chem Soc; 2021 Oct; 143(42):17769-17777. PubMed ID: 34662103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization.
    Arraez FJ; Steenberge PHMV; D'hooge DR
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32586068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress Toward Sustainable Reversible Deactivation Radical Polymerization.
    Scholten PBV; Moatsou D; Detrembleur C; Meier MAR
    Macromol Rapid Commun; 2020 Aug; 41(16):e2000266. PubMed ID: 32686239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology?
    Fromel M; Benetti EM; Pester CW
    ACS Macro Lett; 2022 Apr; 11(4):415-421. PubMed ID: 35575317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme Catalysis for Reversible Deactivation Radical Polymerization.
    Li R; Kong W; An Z
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202033. PubMed ID: 35212121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocontrolled Iodine-Mediated Reversible-Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light.
    Tian C; Wang P; Ni Y; Zhang L; Cheng Z; Zhu X
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):3910-3916. PubMed ID: 31880856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives.
    Peng CH; Yang TY; Zhao Y; Fu X
    Org Biomol Chem; 2014 Nov; 12(43):8580-7. PubMed ID: 25238612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repurposing Biocatalysts to Control Radical Polymerizations.
    Rodriguez KJ; Gajewska B; Pollard J; Pellizzoni MM; Fodor C; Bruns N
    ACS Macro Lett; 2018 Sep; 7(9):1111-1119. PubMed ID: 35632946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible Deactivation Radical Polymerization of Monomers Containing Activated Aziridine Groups.
    McLeod DC; Tsarevsky NV
    Macromol Rapid Commun; 2016 Oct; 37(20):1694-1700. PubMed ID: 27548069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organo-Cobalt Complexes in Reversible-Deactivation Radical Polymerization.
    Benchaphanthawee W; Peng CH
    Chem Rec; 2021 Dec; 21(12):3628-3647. PubMed ID: 34132014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward living radical polymerization.
    Moad G; Rizzardo E; Thang SH
    Acc Chem Res; 2008 Sep; 41(9):1133-42. PubMed ID: 18700787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization.
    Hatton FL; Kedzior SA; Cranston ED; Carlmark A
    Carbohydr Polym; 2017 Feb; 157():1033-1040. PubMed ID: 27987803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of Hydrophilic Homo-Polyacrylamides via Cu(0)-Mediated Reversible Deactivation Radical Polymerization.
    Alsubaie FM; Alothman OY; Alshammari BA; Fouad H
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Ultrasound-Assisted Iodine-Mediated Reversible-Deactivation Radical Polymerization by Piezoelectric Nanoparticles.
    Ren Z; Ding C; Ding R; Wang J; Li Z; Tan R; Wang X; Wang Z; Zhang Z
    ACS Macro Lett; 2023 Aug; 12(8):1159-1165. PubMed ID: 37523272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.