These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35638813)

  • 61. Fundamental insight into electrochemical oxidation of methane towards methanol on transition metal oxides.
    Prajapati A; Collins BA; Goodpaster JD; Singh MR
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33597304
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heterogeneous Single-Atom Catalysts for Electrochemical CO
    Li M; Wang H; Luo W; Sherrell PC; Chen J; Yang J
    Adv Mater; 2020 Aug; 32(34):e2001848. PubMed ID: 32644259
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sulfur as a selective 'soft' oxidant for catalytic methane conversion probed by experiment and theory.
    Zhu Q; Wegener SL; Xie C; Uche O; Neurock M; Marks TJ
    Nat Chem; 2013 Feb; 5(2):104-9. PubMed ID: 23344430
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In aqua dual selective photocatalytic conversion of methane to formic acid and methanol with oxygen and water as oxidants without overoxidation.
    Han JT; Su H; Tan L; Li CJ
    iScience; 2023 Feb; 26(2):105942. PubMed ID: 36711239
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite.
    Wu B; Lin T; Huang M; Li S; Li J; Yu X; Yang R; Sun F; Jiang Z; Sun Y; Zhong L
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202204116. PubMed ID: 35362182
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction.
    Hashiguchi BG; Bischof SM; Konnick MM; Periana RA
    Acc Chem Res; 2012 Jun; 45(6):885-98. PubMed ID: 22482496
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Natural clay-supported palladium catalysts for methane oxidation reaction: effect of alloying.
    Ahmad YH; Mohamed AT; Mahmoud KA; Aljaber AS; Al-Qaradawi SY
    RSC Adv; 2019 Oct; 9(56):32928-32935. PubMed ID: 35529723
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stabilizing Cu
    Zhou X; Shan J; Chen L; Xia BY; Ling T; Duan J; Jiao Y; Zheng Y; Qiao SZ
    J Am Chem Soc; 2022 Feb; 144(5):2079-2084. PubMed ID: 35089014
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations.
    Yu X; Zhong L; Li S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299
    [TBL] [Abstract][Full Text] [Related]  

  • 72.
    He Y; Guo F; Yang KR; Heinlein JA; Bamonte SM; Fee JJ; Hu S; Suib SL; Haller GL; Batista VS; Pfefferle LD
    J Am Chem Soc; 2020 Oct; 142(40):17119-17130. PubMed ID: 32935987
    [TBL] [Abstract][Full Text] [Related]  

  • 73. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Metal-Support Interactions and C1 Chemistry: Transforming Pt-CeO
    Zhang F; Gutiérrez RA; Lustemberg PG; Liu Z; Rui N; Wu T; Ramírez PJ; Xu W; Idriss H; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA
    ACS Catal; 2021 Feb; 11(3):1613-1623. PubMed ID: 34164226
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Influence of High-Energy Faceted TiO
    Wasantwisut S; Xiao Y; Feng P; Gilliard-Abdul-Aziz KL
    Chem Asian J; 2022 Feb; 17(4):e202101253. PubMed ID: 34936730
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Energy-efficient syngas production through catalytic oxy-methane reforming reactions.
    Choudhary TV; Choudhary VR
    Angew Chem Int Ed Engl; 2008; 47(10):1828-47. PubMed ID: 18188848
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fe-O Clusters Anchored on Nodes of Metal-Organic Frameworks for Direct Methane Oxidation.
    Zhao W; Shi Y; Jiang Y; Zhang X; Long C; An P; Zhu Y; Shao S; Yan Z; Li G; Tang Z
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5811-5815. PubMed ID: 33169485
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire?
    Claveau EE; Sader S; Jackson BA; Khan SN; Miliordos E
    Phys Chem Chem Phys; 2023 Feb; 25(7):5313-5326. PubMed ID: 36723253
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method.
    Alvarez-Galvan C; Melian M; Ruiz-Matas L; Eslava JL; Navarro RM; Ahmadi M; Roldan Cuenya B; Fierro JLG
    Front Chem; 2019; 7():104. PubMed ID: 30931293
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Recent Application of Core-Shell Nanostructured Catalysts for CO
    Rusdan NA; Timmiati SN; Isahak WNRW; Yaakob Z; Lim KL; Khaidar D
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.