These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 35638842)
1. Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Oliveras À; Camó C; Caravaca-Fuentes P; Moll L; Riesco-Llach G; Gil-Caballero S; Badosa E; Bonaterra A; Montesinos E; Feliu L; Planas M Appl Environ Microbiol; 2022 Jun; 88(12):e0057422. PubMed ID: 35638842 [TBL] [Abstract][Full Text] [Related]
2. A Bifunctional Peptide Conjugate That Controls Infections of Caravaca-Fuentes P; Camó C; Oliveras À; Baró A; Francés J; Badosa E; Planas M; Feliu L; Montesinos E; Bonaterra A Molecules; 2021 Jun; 26(11):. PubMed ID: 34198776 [TBL] [Abstract][Full Text] [Related]
3. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Güell I; Cabrefiga J; Badosa E; Ferre R; Talleda M; Bardají E; Planas M; Feliu L; Montesinos E Appl Environ Microbiol; 2011 Apr; 77(8):2667-75. PubMed ID: 21335383 [TBL] [Abstract][Full Text] [Related]
4. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria. Camó C; Torné M; Besalú E; Rosés C; Cirac AD; Moiset G; Badosa E; Bardají E; Montesinos E; Planas M; Feliu L Molecules; 2017 Oct; 22(11):. PubMed ID: 29072606 [TBL] [Abstract][Full Text] [Related]
5. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Badosa E; Ferre R; Planas M; Feliu L; Besalú E; Cabrefiga J; Bardají E; Montesinos E Peptides; 2007 Dec; 28(12):2276-85. PubMed ID: 17980935 [TBL] [Abstract][Full Text] [Related]
6. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection. Güell I; Vilà S; Badosa E; Montesinos E; Feliu L; Planas M Biopolymers; 2017 May; 108(3):. PubMed ID: 28026016 [TBL] [Abstract][Full Text] [Related]
7. Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases. Camó C; Bonaterra A; Badosa E; Baró A; Montesinos L; Montesinos E; Planas M; Feliu L Peptides; 2019 Feb; 112():85-95. PubMed ID: 30508634 [TBL] [Abstract][Full Text] [Related]
8. A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. Montesinos L; Gascón B; Ruz L; Badosa E; Planas M; Feliu L; Montesinos E Front Plant Sci; 2021; 12():756357. PubMed ID: 34733307 [TBL] [Abstract][Full Text] [Related]
9. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens. Güell I; Micaló L; Cano L; Badosa E; Ferre R; Montesinos E; Bardají E; Feliu L; Planas M Peptides; 2012 Jan; 33(1):9-17. PubMed ID: 22198367 [TBL] [Abstract][Full Text] [Related]
10. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. Moll L; Giralt N; Planas M; Feliu L; Montesinos E; Bonaterra A; Badosa E Plant Cell Rep; 2024 Jul; 43(8):190. PubMed ID: 38976088 [TBL] [Abstract][Full Text] [Related]
11. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Monroc S; Badosa E; Feliu L; Planas M; Montesinos E; Bardají E Peptides; 2006 Nov; 27(11):2567-74. PubMed ID: 16730857 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Ferre R; Badosa E; Feliu L; Planas M; Montesinos E; Bardají E Appl Environ Microbiol; 2006 May; 72(5):3302-8. PubMed ID: 16672470 [TBL] [Abstract][Full Text] [Related]
14. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Monroc S; Badosa E; Besalú E; Planas M; Bardají E; Montesinos E; Feliu L Peptides; 2006 Nov; 27(11):2575-84. PubMed ID: 16762457 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial Activity of Pharbitin, Isolated from the Seeds of Nguyen HT; Yu NH; Park AR; Park HW; Kim IS; Kim JC J Microbiol Biotechnol; 2017 Oct; 27(10):1763-1772. PubMed ID: 28851207 [TBL] [Abstract][Full Text] [Related]
16. Phenylboronic acid as a novel agent for controlling plant pathogenic bacteria. Martinko K; Ivanković S; Đermić E; Đermić D Pest Manag Sci; 2022 Jun; 78(6):2417-2422. PubMed ID: 35301783 [TBL] [Abstract][Full Text] [Related]
17. Multiple lysine substitutions in the peptaibol trichogin GA IV enhance the antibiotic activity against plant pathogenic Pseudomonas syringae. Fodil S; De Zotti M; Tundo S; Gabbatore L; Vettorazzo I; Luti S; Musetti R; Sella L; Favaron F; Baccelli I Pestic Biochem Physiol; 2024 May; 201():105901. PubMed ID: 38685232 [TBL] [Abstract][Full Text] [Related]
18. Random peptide mixtures as new crop protection agents. Topman S; Tamir-Ariel D; Bochnic-Tamir H; Stern Bauer T; Shafir S; Burdman S; Hayouka Z Microb Biotechnol; 2018 Nov; 11(6):1027-1036. PubMed ID: 29488347 [TBL] [Abstract][Full Text] [Related]
19. Imidazolium salts as alternative compounds to control diseases caused by plant pathogenic bacteria. Neves YF; Eloi ACL; de Freitas HMM; Soares EGO; Rivillo D; Demétrio da Silva V; Schrekker HS; Badel JL J Appl Microbiol; 2020 May; 128(5):1236-1247. PubMed ID: 31922640 [TBL] [Abstract][Full Text] [Related]
20. Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control. Datta A; Bhattacharyya D; Singh S; Ghosh A; Schmidtchen A; Malmsten M; Bhunia A J Biol Chem; 2016 Jun; 291(25):13301-17. PubMed ID: 27137928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]