These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 35638877)
1. Polyurethane-gelatin methacryloyl hybrid ink for 3D printing of biocompatible and tough vascular networks. Huang Y; Zhao H; Wang X; Liu X; Gao Z; Bai H; Lv F; Gu Q; Wang S Chem Commun (Camb); 2022 Jun; 58(49):6894-6897. PubMed ID: 35638877 [TBL] [Abstract][Full Text] [Related]
2. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
3. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Das S; Jegadeesan JT; Basu B Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816 [TBL] [Abstract][Full Text] [Related]
4. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Tanadchangsaeng N; Pasanaphong K; Tawonsawatruk T; Rattanapinyopituk K; Tangketsarawan B; Rawiwet V; Kongchanagul A; Srikaew N; Yoyruerop T; Panupinthu N; Sangpayap R; Panaksri A; Boonyagul S; Hemstapat R Sci Rep; 2024 Oct; 14(1):23240. PubMed ID: 39369014 [TBL] [Abstract][Full Text] [Related]
5. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
6. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
7. 3D printing of complex GelMA-based scaffolds with nanoclay. Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
9. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
10. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties. Das S; Valoor R; Ratnayake P; Basu B ACS Appl Bio Mater; 2024 May; 7(5):2809-2835. PubMed ID: 38602318 [TBL] [Abstract][Full Text] [Related]
11. A multicrosslinked network composite hydrogel scaffold based on DLP photocuring printing for nasal cartilage repair. Jia W; Liu Z; Sun L; Cao Y; Shen Z; Li M; An Y; Zhang H; Sang S Biotechnol Bioeng; 2024 Sep; 121(9):2752-2766. PubMed ID: 38877732 [TBL] [Abstract][Full Text] [Related]
12. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting. Hsieh CT; Hsu SH ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899 [TBL] [Abstract][Full Text] [Related]
13. Properties and Printability of the Synthesized Hydrogel Based on GelMA. Arguchinskaya NV; Isaeva EV; Kisel AA; Beketov EE; Lagoda TS; Baranovskii DS; Yakovleva ND; Demyashkin GA; Komarova LN; Astakhina SO; Shubin NE; Shegay PV; Ivanov SA; Kaprin AD Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768446 [TBL] [Abstract][Full Text] [Related]
14. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
16. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Twohig C; Helsinga M; Mansoorifar A; Athirasala A; Tahayeri A; França CM; Pajares SA; Abdelmoniem R; Scherrer S; Durual S; Ferracane J; Bertassoni LE Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111976. PubMed ID: 33812604 [TBL] [Abstract][Full Text] [Related]