BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35638936)

  • 1. An Integer Linear Programming Approach for Scaffolding Based on Exemplar Breakpoint Distance.
    Shieh YK; Peng DY; Chen YH; Wu TW; Lu CL
    J Comput Biol; 2022 Sep; 29(9):961-973. PubMed ID: 35638936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dynamic Programming Algorithm For (1,2)-Exemplar Breakpoint Distance.
    Wei Z; Zhu D; Wang L
    J Comput Biol; 2015 Jul; 22(7):666-76. PubMed ID: 26161597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ILP-based maximum likelihood genome scaffolding.
    Lindsay J; Salooti H; Măndoiu I; Zelikovsky A
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25253180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Computing Breakpoint Distances for Genomes with Duplicate Genes.
    Shao M; Moret BME
    J Comput Biol; 2017 Jun; 24(6):571-580. PubMed ID: 27788022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fast and Exact Algorithm for the Exemplar Breakpoint Distance.
    Shao M; Moret BM
    J Comput Biol; 2016 May; 23(5):337-46. PubMed ID: 26953781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.
    Shao M; Lin Y; Moret BM
    J Comput Biol; 2015 May; 22(5):425-35. PubMed ID: 25517208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching the One-Sided Exemplar Adjacency Number Problem.
    Qingge L; Smith K; Jungst S; Wang B; Yang Q; Zhu B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1946-1954. PubMed ID: 31056506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing the Rearrangement Distance of Natural Genomes.
    Bohnenkämper L; Braga MDV; Doerr D; Stoye J
    J Comput Biol; 2021 Apr; 28(4):410-431. PubMed ID: 33393848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.
    Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D
    Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast scaffolding with small independent mixed integer programs.
    Salmela L; Mäkinen V; Välimäki N; Ylinen J; Ukkonen E
    Bioinformatics; 2011 Dec; 27(23):3259-65. PubMed ID: 21998153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The zero exemplar distance problem.
    Jiang M
    J Comput Biol; 2011 Sep; 18(9):1077-86. PubMed ID: 21899417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-CSAR: a multiple reference-based contig scaffolder using algebraic rearrangements.
    Chen KT; Shen HT; Lu CL
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):139. PubMed ID: 30598087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembling contigs in draft genomes using reversals and block-interchanges.
    Li CL; Chen KT; Lu CL
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S9. PubMed ID: 23734866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CAR: contig assembly of prokaryotic draft genomes using rearrangements.
    Lu CL; Chen KT; Huang SY; Chiu HT
    BMC Bioinformatics; 2014 Nov; 15(1):381. PubMed ID: 25431302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CSAR-web: a web server of contig scaffolding using algebraic rearrangements.
    Chen KT; Lu CL
    Nucleic Acids Res; 2018 Jul; 46(W1):W55-W59. PubMed ID: 29733393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Rearrangement with ILP.
    Hartmann T; Wieseke N; Sharan R; Middendorf M; Bernt M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1585-1593. PubMed ID: 28574364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing the reversal distance between genomes in the presence of multi-gene families via binary integer programming.
    Suksawatchon J; Lursinsap C; Bodén M
    J Bioinform Comput Biol; 2007 Feb; 5(1):117-33. PubMed ID: 17477494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integer Programming Formulation of the Minimum Common String Partition Problem.
    Ferdous SM; Rahman MS
    PLoS One; 2015; 10(7):e0130266. PubMed ID: 26134848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.