These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35638936)

  • 21. SCARPA: scaffolding reads with practical algorithms.
    Donmez N; Brudno M
    Bioinformatics; 2013 Feb; 29(4):428-34. PubMed ID: 23274213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Better ILP-Based Approaches to Haplotype Assembly.
    Chen ZZ; Deng F; Shen C; Wang Y; Wang L
    J Comput Biol; 2016 Jul; 23(7):537-52. PubMed ID: 27347882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Divide-and-conquer approach for the exemplar breakpoint distance.
    Nguyen CT; Tay YC; Zhang L
    Bioinformatics; 2005 May; 21(10):2171-6. PubMed ID: 15713729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ILP solution for the gene duplication problem.
    Chang WC; Burleigh GJ; Fernández-Baca DF; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S14. PubMed ID: 21342543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global exact optimisations for chloroplast structural haplotype scaffolding.
    Epain V; Andonov R
    Algorithms Mol Biol; 2024 Feb; 19(1):5. PubMed ID: 38321522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. L_RNA_scaffolder: scaffolding genomes with transcripts.
    Xue W; Li JT; Zhu YP; Hou GY; Kong XF; Kuang YY; Sun XW
    BMC Genomics; 2013 Sep; 14():604. PubMed ID: 24010822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-CSAR: a web server for scaffolding contigs using multiple reference genomes.
    Liu SC; Ju YR; Lu CL
    Nucleic Acids Res; 2022 Jul; 50(W1):W500-W509. PubMed ID: 35524553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome rearrangement with gene families.
    Sankoff D
    Bioinformatics; 1999 Nov; 15(11):909-17. PubMed ID: 10743557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient algorithm for the contig ordering problem under algebraic rearrangement distance.
    Lu CL
    J Comput Biol; 2015 Nov; 22(11):975-87. PubMed ID: 26247343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A unified ILP framework for core ancestral genome reconstruction problems.
    Avdeyev P; Alexeev N; Rong Y; Alekseyev MA
    Bioinformatics; 2020 May; 36(10):2993-3003. PubMed ID: 32058559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Better ILP models for haplotype assembly.
    Etemadi M; Bagherian M; Chen ZZ; Wang L
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):52. PubMed ID: 29504891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single molecule sequencing-guided scaffolding and correction of draft assemblies.
    Zhu S; Chen DZ; Emrich SJ
    BMC Genomics; 2017 Dec; 18(Suppl 10):879. PubMed ID: 29244003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SCOP: a novel scaffolding algorithm based on contig classification and optimization.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Apr; 35(7):1142-1150. PubMed ID: 30184046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SLIQ: simple linear inequalities for efficient contig scaffolding.
    Roy RS; Chen KC; Sengupta AM; Schliep A
    J Comput Biol; 2012 Oct; 19(10):1162-75. PubMed ID: 23057825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly scaffolding with PE-contaminated mate-pair libraries.
    Sahlin K; Chikhi R; Arvestad L
    Bioinformatics; 2016 Jul; 32(13):1925-32. PubMed ID: 27153683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombinations, chains and caps: resolving problems with the DCJ-indel model.
    Bohnenkämper L
    Algorithms Mol Biol; 2024 Feb; 19(1):8. PubMed ID: 38414060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exact approaches for scaffolding.
    Weller M; Chateau A; Giroudeau R
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S2. PubMed ID: 26451725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SIS: a program to generate draft genome sequence scaffolds for prokaryotes.
    Dias Z; Dias U; Setubal JC
    BMC Bioinformatics; 2012 May; 13():96. PubMed ID: 22583530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An exact algorithm for the zero exemplar breakpoint distance problem.
    Zhu D; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1469-77. PubMed ID: 24407305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.