BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35639017)

  • 1. Aggregation of Lactoferrin Caused by Droplet Atomization Process via a Two-Fluid Nozzle: The Detrimental Effect of Air-Water Interfaces.
    Dao HM; Sahakijpijarn S; Chrostowski RR; Moon C; Mangolini F; Cui Z; Williams RO
    Mol Pharm; 2022 Jul; 19(7):2662-2675. PubMed ID: 35639017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability.
    Sonner C; Maa YF; Lee G
    J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity.
    Yu Z; Johnston KP; Williams RO
    Eur J Pharm Sci; 2006 Jan; 27(1):9-18. PubMed ID: 16188431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrapment of air microbubbles by ice crystals during freezing exacerbates freeze-induced denaturation of proteins.
    Dao HM; Sahakijpijarn S; Chrostowski R; Peng HH; Moon C; Xu H; Mangolini F; Do HH; Cui Z; Williams RO
    Int J Pharm; 2022 Nov; 628():122306. PubMed ID: 36265662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery.
    Schiffter H; Condliffe J; Vonhoff S
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S483-500. PubMed ID: 20519207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of bovine lactoferrin powders produced through spray and freeze drying processes.
    Wang B; Timilsena YP; Blanch E; Adhikari B
    Int J Biol Macromol; 2017 Feb; 95():985-994. PubMed ID: 27984147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying.
    Hufnagel S; Xu H; Sahakijpijarn S; Moon C; Chow LQM; Williams Iii RO; Cui Z
    Int J Pharm; 2022 Apr; 618():121637. PubMed ID: 35259440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jet-vortex spray freeze drying for the production of inhalable lyophilisate powders.
    Wanning S; Süverkrüp R; Lamprecht A
    Eur J Pharm Sci; 2017 Jan; 96():1-7. PubMed ID: 27593988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Shear Stresses on Adenovirus Activity and Aggregation during Atomization To Produce Thermally Stable Vaccines by Spray Drying.
    Morgan BA; Manser M; Jeyanathan M; Xing Z; Cranston ED; Thompson MR
    ACS Biomater Sci Eng; 2020 Jul; 6(7):4304-4313. PubMed ID: 33463328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein spray-freeze drying. Effect of atomization conditions on particle size and stability.
    Costantino HR; Firouzabadian L; Hogeland K; Wu C; Beganski C; Carrasquillo KG; Córdova M; Griebenow K; Zale SE; Tracy MA
    Pharm Res; 2000 Nov; 17(11):1374-83. PubMed ID: 11205730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles.
    Yu Z; Garcia AS; Johnston KP; Williams RO
    Eur J Pharm Biopharm; 2004 Nov; 58(3):529-37. PubMed ID: 15451527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of atomization on the surface composition of spray-dried milk droplets.
    Foerster M; Gengenbach T; Woo MW; Selomulya C
    Colloids Surf B Biointerfaces; 2016 Apr; 140():460-471. PubMed ID: 26803667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections.
    Leung SS; Parumasivam T; Gao FG; Carrigy NB; Vehring R; Finlay WH; Morales S; Britton WJ; Kutter E; Chan HK
    Pharm Res; 2016 Jun; 33(6):1486-96. PubMed ID: 26928668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.
    Niwa T; Shimabara H; Danjo K
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):195-200. PubMed ID: 20118578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders.
    Wanning S; Süverkrüp R; Lamprecht A
    Int J Pharm; 2020 Aug; 586():119564. PubMed ID: 32590097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Stability Constraints in the Particle Engineering of an Inhaled Monoclonal Antibody Dried Powder.
    Brunaugh AD; Ding L; Wu T; Schneider M; Khalaf R; Smyth HDC
    J Pharm Sci; 2022 Feb; 111(2):403-416. PubMed ID: 34453927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulating Inhalable Dry Powders Using Two-Fluid and Three-Fluid Nozzle Spray Drying.
    Leng D; Thanki K; Foged C; Yang M
    Pharm Res; 2018 Nov; 35(12):247. PubMed ID: 30386927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of alum-adjuvanted vaccine dry powder formulations: mechanism and application.
    Maa YF; Zhao L; Payne LG; Chen D
    J Pharm Sci; 2003 Feb; 92(2):319-32. PubMed ID: 12532382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic Droplet Stream Expansion for the Production of Spray Freeze-Dried Powders.
    Wanning S; Süverkrüp R; Lamprecht A
    AAPS PharmSciTech; 2017 Jul; 18(5):1760-1769. PubMed ID: 27761706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.