These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35639315)
1. An innovative forecasting model to predict wind energy. Zhang Y; Wang S Environ Sci Pollut Res Int; 2022 Oct; 29(49):74602-74618. PubMed ID: 35639315 [TBL] [Abstract][Full Text] [Related]
2. Optimization scheme of wind energy prediction based on artificial intelligence. Zhang Y; Li R; Zhang J Environ Sci Pollut Res Int; 2021 Aug; 28(29):39966-39981. PubMed ID: 33763837 [TBL] [Abstract][Full Text] [Related]
3. Application of hybrid model based on CEEMDAN, SVD, PSO to wind energy prediction. Zhang Y; Chen Y Environ Sci Pollut Res Int; 2022 Mar; 29(15):22661-22674. PubMed ID: 34797536 [TBL] [Abstract][Full Text] [Related]
4. A hybrid prediction model for forecasting wind energy resources. Zhang Y; Pan G Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801 [TBL] [Abstract][Full Text] [Related]
5. Long, short, and medium terms wind speed prediction model based on LSTM optimized by improved moth flame optimization algorithm. Li R; Wang J; Li J; Kou M Environ Sci Pollut Res Int; 2024 May; 31(25):37256-37282. PubMed ID: 38771541 [TBL] [Abstract][Full Text] [Related]
6. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization. Teferra DM; Ngoo LMH; Nyakoe GN Heliyon; 2023 Jan; 9(1):e12802. PubMed ID: 36704286 [TBL] [Abstract][Full Text] [Related]
7. Improved chimpanzee algorithm based on CEEMDAN combination to optimize ELM short-term wind speed prediction. Sun W; Wang X Environ Sci Pollut Res Int; 2023 Mar; 30(12):35115-35126. PubMed ID: 36525186 [TBL] [Abstract][Full Text] [Related]
8. Short-term wind speed prediction based on FEEMD-PE-SSA-BP. Zhu T; Wang W; Yu M Environ Sci Pollut Res Int; 2022 Nov; 29(52):79288-79305. PubMed ID: 35710968 [TBL] [Abstract][Full Text] [Related]
9. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting. Yang S; Yuan A; Yu Z Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919 [TBL] [Abstract][Full Text] [Related]
10. Ultra-Short-Term Offshore Wind Power Prediction Based on PCA-SSA-VMD and BiLSTM. Wang Z; Ying Y; Kou L; Ke W; Wan J; Yu Z; Liu H; Zhang F Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257537 [TBL] [Abstract][Full Text] [Related]
11. A novel compound wind speed forecasting model based on the back propagation neural network optimized by bat algorithm. Cui Y; Huang C; Cui Y Environ Sci Pollut Res Int; 2020 Mar; 27(7):7353-7365. PubMed ID: 31884551 [TBL] [Abstract][Full Text] [Related]
12. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Sun W; Wang X; Tan B Environ Sci Pollut Res Int; 2022 Jul; 29(33):49684-49699. PubMed ID: 35220530 [TBL] [Abstract][Full Text] [Related]
13. Research on Wind Power Short-Term Forecasting Method Based on Temporal Convolutional Neural Network and Variational Modal Decomposition. Tang J; Chien YR Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236512 [TBL] [Abstract][Full Text] [Related]
14. Short-term wind speed prediction based on improved Hilbert-Huang transform method coupled with NAR dynamic neural network model. Chen J; Guo Z; Zhang L; Zhang S Sci Rep; 2024 Jan; 14(1):617. PubMed ID: 38182873 [TBL] [Abstract][Full Text] [Related]
15. Wind speed prediction based on CEEMD-SE and multiple echo state network with Gauss-Markov fusion. Lian L Rev Sci Instrum; 2022 Jan; 93(1):015105. PubMed ID: 35104944 [TBL] [Abstract][Full Text] [Related]
16. Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer. Rani R HJ; Victoire T AA PLoS One; 2018; 13(5):e0196871. PubMed ID: 29768463 [TBL] [Abstract][Full Text] [Related]
17. A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso. Wang T PeerJ Comput Sci; 2021; 7():e732. PubMed ID: 34712801 [TBL] [Abstract][Full Text] [Related]
18. Research on renewable energy prediction technology: empirical analysis for Argentina and China. Li G; Wang J; Qi Z; Wang T; Ren Y; Zhang Y; Li G Environ Sci Pollut Res Int; 2023 Feb; 30(8):21225-21237. PubMed ID: 36269484 [TBL] [Abstract][Full Text] [Related]
19. Ship power load forecasting based on PSO-SVM. Dai X; Sheng K; Shu F Math Biosci Eng; 2022 Mar; 19(5):4547-4567. PubMed ID: 35430827 [TBL] [Abstract][Full Text] [Related]
20. A Novel Bio-Inspired Optimization Algorithm Design for Wind Power Engineering Applications Time-Series Forecasting. Karim FK; Khafaga DS; Eid MM; Towfek SK; Alkahtani HK Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]