BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35639325)

  • 1. Risk assessment of COVID-19 infection for subway commuters integrating dynamic changes in passenger numbers.
    Li P; Chen X; Ma C; Zhu C; Lu W
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74715-74724. PubMed ID: 35639325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and exposure characteristics of PM
    Ji W; Li X; Wang C
    Environ Res; 2021 Jun; 197():111042. PubMed ID: 33753077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.
    Vilcassim MJ; Thurston GD; Peltier RE; Gordon T
    Environ Sci Technol; 2014 Dec; 48(24):14738-45. PubMed ID: 25409007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [To the issue on the optimization and regulation of microclimate in the subway trains and stations].
    Leksin AG; Beresneva TG; Kaptsov VA; Korotich LP; Evlampieva MN; Timoshenkova EV
    Gig Sanit; 2014; (4):52-4. PubMed ID: 25842496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to airborne particulate matter in the subway system.
    Martins V; Moreno T; Minguillón MC; Amato F; de Miguel E; Capdevila M; Querol X
    Sci Total Environ; 2015 Apr; 511():711-22. PubMed ID: 25616190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in total volatile organic compound concentration in Seoul subway stations before (2019) and after (2021) the COVID-19 outbreak.
    Hwang SH; Won JU; Park WM
    Sci Rep; 2023 Nov; 13(1):20328. PubMed ID: 37990122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.
    Kim KY; Kim YS; Roh YM; Lee CM; Kim CN
    J Hazard Mater; 2008 Jun; 154(1-3):440-3. PubMed ID: 18036738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The composition of the bacterial communities collected from the PM
    Sharma S; Jahanzaib M; Bakht A; Kim MK; Lee H; Park D
    Sci Rep; 2024 Mar; 14(1):6478. PubMed ID: 38499557
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Luglio DG; Katsigeorgis M; Hess J; Kim R; Adragna J; Raja A; Gordon C; Fine J; Thurston G; Gordon T; Vilcassim MJR
    Environ Health Perspect; 2021 Feb; 129(2):27001. PubMed ID: 33565894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of platform subway depth on the presence of Airborne PM
    Figueroa-Lara JJ; Murcia-González JM; García-Martínez R; Romero-Romo M; Torres Rodríguez M; Mugica-Álvarez V
    J Hazard Mater; 2019 Sep; 377():427-436. PubMed ID: 31176078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the factors that influence exposure to SARS-CoV-2 on a subway train carriage.
    Miller D; King MF; Nally J; Drodge JR; Reeves GI; Bate AM; Cooper H; Dalrymple U; Hall I; López-García M; Parker ST; Noakes CJ
    Indoor Air; 2022 Feb; 32(2):e12976. PubMed ID: 35133673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [MICROCLIMATE CONDITION IN SUBWAY CARS IN THE SUMMER PERIOD OF THE YEAR].
    Leksin AG; Evlampieva MN; Timoshenkova EV; Morgunov AV; Kaptsov VA
    Gig Sanit; 2015; 94(3):63-6. PubMed ID: 26302563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review.
    Wen Y; Leng J; Shen X; Han G; Sun L; Yu F
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations.
    Oh T; Kim M; Lim J; Kang O; Shetty KV; SankaraRao B; Yoo C; Park JH; Kim JT
    J Air Waste Manag Assoc; 2012 May; 62(5):517-26. PubMed ID: 22696802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China.
    Feng Y; Mu C; Zhai J; Li J; Zou T
    J Hazard Mater; 2010 Nov; 183(1-3):574-82. PubMed ID: 20692096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal, compositional, and functional differences in the microbiome of Bangkok subway air environment.
    Siriarchawatana P; Pumkaeo P; Harnpicharnchai P; Likhitrattanapisal S; Mayteeworakoon S; Boonsin W; Zhou X; Liang J; Cai L; Ingsriswang S
    Environ Res; 2023 Feb; 219():115065. PubMed ID: 36535389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventilation impacts on infection risk mitigation, improvement of environmental quality and energy efficiency for subway carriages.
    Ren C; Chen H; Wang J; Feng Z; Cao SJ
    Build Environ; 2022 Aug; 222():109358. PubMed ID: 35822126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stratum Ventilation: Enabling Simultaneous Energy Conservation and Air Purification in Subway Cars.
    Mao Y; Wang S; Liang J; Mao S; Han Y; Zhang S
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial characteristics of fine particulate matter in subway stations: Source apportionment and health risks.
    Ji W; Zhao K; Liu C; Li X
    Environ Pollut; 2022 Jul; 305():119279. PubMed ID: 35405218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of traditional and advanced technologies for the removal of particulate matter in subway systems.
    Park JH; Son YS; Kim KH
    Indoor Air; 2019 Mar; 29(2):177-191. PubMed ID: 30586211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.