These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35639499)

  • 1. Inference of cell state transitions and cell fate plasticity from single-cell with MARGARET.
    Pandey K; Zafar H
    Nucleic Acids Res; 2022 Aug; 50(15):e86. PubMed ID: 35639499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy-based inference of transition states and cellular trajectory for single-cell transcriptomics.
    Gan Y; Guo C; Guo W; Xu G; Zou G
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BLTSA: pseudotime prediction for single cells by branched local tangent space alignment.
    Li L; Zhao Y; Li H; Zhang S
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint trajectory inference for single-cell genomics using deep learning with a mixture prior.
    Du JH; Chen T; Gao M; Wang J
    Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2316256121. PubMed ID: 39226366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CStreet: a computed Cell State trajectory inference method for time-series single-cell RNA sequencing data.
    Zhao C; Xiu W; Hua Y; Zhang N; Zhang Y
    Bioinformatics; 2021 Nov; 37(21):3774-3780. PubMed ID: 34196686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells.
    Wolf FA; Hamey FK; Plass M; Solana J; Dahlin JS; Göttgens B; Rajewsky N; Simon L; Theis FJ
    Genome Biol; 2019 Mar; 20(1):59. PubMed ID: 30890159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FateNet: an integration of dynamical systems and deep learning for cell fate prediction.
    Sadria M; Bury TM
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39177093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CellRank 2: unified fate mapping in multiview single-cell data.
    Weiler P; Lange M; Klein M; Pe'er D; Theis F
    Nat Methods; 2024 Jul; 21(7):1196-1205. PubMed ID: 38871986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CellRank for directed single-cell fate mapping.
    Lange M; Bergen V; Klein M; Setty M; Reuter B; Bakhti M; Lickert H; Ansari M; Schniering J; Schiller HB; Pe'er D; Theis FJ
    Nat Methods; 2022 Feb; 19(2):159-170. PubMed ID: 35027767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular transitions in early progenitors during human cord blood hematopoiesis.
    Zheng S; Papalexi E; Butler A; Stephenson W; Satija R
    Mol Syst Biol; 2018 Mar; 14(3):e8041. PubMed ID: 29545397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring Tree-Shaped Single-Cell Trajectories with Totem.
    Sousa AGG; Smolander J; Junttila S; Elo LL
    Methods Mol Biol; 2024; 2812():169-191. PubMed ID: 39068362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer.
    Xie K; Liu Z; Chen N; Chen T
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):292-305. PubMed ID: 33607293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TraSig: inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data.
    Li D; Velazquez JJ; Ding J; Hislop J; Ebrahimkhani MR; Bar-Joseph Z
    Genome Biol; 2022 Mar; 23(1):73. PubMed ID: 35255944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene-expression memory-based prediction of cell lineages from scRNA-seq datasets.
    Eisele AS; Tarbier M; Dormann AA; Pelechano V; Suter DM
    Nat Commun; 2024 Mar; 15(1):2744. PubMed ID: 38553478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based branching point detection in single-cell data by K-branches clustering.
    Chlis NK; Wolf FA; Theis FJ
    Bioinformatics; 2017 Oct; 33(20):3211-3219. PubMed ID: 28582478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions.
    Yeo GHT; Saksena SD; Gifford DK
    Nat Commun; 2021 May; 12(1):3222. PubMed ID: 34050150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust and accurate single-cell data trajectory inference method using ensemble pseudotime.
    Zhang Y; Tran D; Nguyen T; Dascalu SM; Harris FC
    BMC Bioinformatics; 2023 Feb; 24(1):55. PubMed ID: 36803767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes.
    Wang K; Hou L; Wang X; Zhai X; Lu Z; Zi Z; Zhai W; He X; Curtis C; Zhou D; Hu Z
    Nat Biotechnol; 2024 May; 42(5):778-789. PubMed ID: 37524958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data.
    Tran TN; Bader GD
    PLoS Comput Biol; 2020 Sep; 16(9):e1008205. PubMed ID: 32903255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.