These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35639661)

  • 1. Conditional generative modeling for de novo protein design with hierarchical functions.
    Kucera T; Togninalli M; Meng-Papaxanthos L
    Bioinformatics; 2022 Jun; 38(13):3454-3461. PubMed ID: 35639661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Adversarial Networks for De Novo Molecular Design.
    Lee YJ; Kahng H; Kim SB
    Mol Inform; 2021 Oct; 40(10):e2100045. PubMed ID: 34622551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient link prediction in the protein-protein interaction network using topological information in a generative adversarial network machine learning model.
    Balogh OM; Benczik B; Horváth A; Pétervári M; Csermely P; Ferdinandy P; Ágg B
    BMC Bioinformatics; 2022 Feb; 23(1):78. PubMed ID: 35183129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
    Lin E; Lin CH; Lane HY
    J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adversarial generation of gene expression data.
    Viñas R; Andrés-Terré H; Liò P; Bryson K
    Bioinformatics; 2022 Jan; 38(3):730-737. PubMed ID: 33471074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical deep learning for predicting GO annotations by integrating protein knowledge.
    Merino GA; Saidi R; Milone DH; Stegmayer G; Martin MJ
    Bioinformatics; 2022 Sep; 38(19):4488-4496. PubMed ID: 35929781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.
    Kulmanov M; Khan MA; Hoehndorf R; Wren J
    Bioinformatics; 2018 Feb; 34(4):660-668. PubMed ID: 29028931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures.
    Xie X; Valiente PA; Kim PM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36651657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting pretrained biochemical language models for targeted drug design.
    Uludoğan G; Ozkirimli E; Ulgen KO; Karalı N; Özgür A
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii155-ii161. PubMed ID: 36124801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms.
    Kulmanov M; Hoehndorf R
    Bioinformatics; 2022 Jun; 38(Suppl 1):i238-i245. PubMed ID: 35758802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring generative deep learning for omics data using log-linear models.
    Hess M; Hackenberg M; Binder H
    Bioinformatics; 2020 Dec; 36(20):5045-5053. PubMed ID: 32647888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of cellular structures using conditional deep generative networks.
    Yuan H; Cai L; Wang Z; Hu X; Zhang S; Ji S
    Bioinformatics; 2019 Jun; 35(12):2141-2149. PubMed ID: 30398548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GO Bench: shared hub for universal benchmarking of machine learning-based protein functional annotations.
    Dickson A; Asgari E; McHardy AC; Mofrad MRK
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36786404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating tertiary protein structures via interpretable graph variational autoencoders.
    Guo X; Du Y; Tadepalli S; Zhao L; Shehu A
    Bioinform Adv; 2021; 1(1):vbab036. PubMed ID: 36700110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative Adversarial Networks.
    Karimi M; Zhu S; Cao Y; Shen Y
    J Chem Inf Model; 2020 Dec; 60(12):5667-5681. PubMed ID: 32945673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TALE: Transformer-based protein function Annotation with joint sequence-Label Embedding.
    Cao Y; Shen Y
    Bioinformatics; 2021 Sep; 37(18):2825-2833. PubMed ID: 33755048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PC-GAIN: Pseudo-label conditional generative adversarial imputation networks for incomplete data.
    Wang Y; Li D; Li X; Yang M
    Neural Netw; 2021 Sep; 141():395-403. PubMed ID: 34139636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Generative Models for 3D Linker Design.
    Imrie F; Bradley AR; van der Schaar M; Deane CM
    J Chem Inf Model; 2020 Apr; 60(4):1983-1995. PubMed ID: 32195587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-objective de novo drug design with conditional graph generative model.
    Li Y; Zhang L; Liu Z
    J Cheminform; 2018 Jul; 10(1):33. PubMed ID: 30043127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.