These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35639705)

  • 1. scPreGAN, a deep generative model for predicting the response of single-cell expression to perturbation.
    Wei X; Dong J; Wang F
    Bioinformatics; 2022 Jun; 38(13):3377-3384. PubMed ID: 35639705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network.
    Xu Z; Luo J; Xiong Z
    Bioinformatics; 2022 Nov; 38(22):5042-5048. PubMed ID: 36193998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting single-cell cellular responses to perturbations using cycle consistency learning.
    Huang W; Liu H
    Bioinformatics; 2024 Jun; 40(Suppl 1):i462-i470. PubMed ID: 38940153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.
    Lin TT; Sun YY; Wang CT; Cheng WC; Lu IH; Lin CY; Chen SH
    Bioinform Adv; 2022; 2(1):vbac080. PubMed ID: 36699402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dr.VAE: improving drug response prediction via modeling of drug perturbation effects.
    Rampášek L; Hidru D; Smirnov P; Haibe-Kains B; Goldenberg A
    Bioinformatics; 2019 Oct; 35(19):3743-3751. PubMed ID: 30850846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein contact map refinement for improving structure prediction using generative adversarial networks.
    Maddhuri Venkata Subramaniya SR; Terashi G; Jain A; Kagaya Y; Kihara D
    Bioinformatics; 2021 Oct; 37(19):3168-3174. PubMed ID: 33787852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scPRAM accurately predicts single-cell gene expression perturbation response based on attention mechanism.
    Jiang Q; Chen S; Chen X; Jiang R
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38625746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digitally predicting protein localization and manipulating protein activity in fluorescence images using 4D reslicing GAN.
    Jiao Y; Gu L; Jiang Y; Weng M; Yang M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36373962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous Space Construction and Projection for Single-Cell Expression Prediction Based on Deep Learning.
    Yeh CH; Chen ZG; Liou CY; Chen MJ
    Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models.
    Carrillo-Perez F; Pizurica M; Ozawa MG; Vogel H; West RB; Kong CS; Herrera LJ; Shen J; Gevaert O
    Cell Rep Methods; 2023 Aug; 3(8):100534. PubMed ID: 37671024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring generative deep learning for omics data using log-linear models.
    Hess M; Hackenberg M; Binder H
    Bioinformatics; 2020 Dec; 36(20):5045-5053. PubMed ID: 32647888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep feature extraction of single-cell transcriptomes by generative adversarial network.
    Bahrami M; Maitra M; Nagy C; Turecki G; Rabiee HR; Li Y
    Bioinformatics; 2021 Jun; 37(10):1345-1351. PubMed ID: 33226074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACTIVA: realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders.
    Heydari AA; Davalos OA; Zhao L; Hoyer KK; Sindi SS
    Bioinformatics; 2022 Apr; 38(8):2194-2201. PubMed ID: 35179571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of mutation effects using a deep temporal convolutional network.
    Kim HY; Kim D
    Bioinformatics; 2020 Apr; 36(7):2047-2052. PubMed ID: 31746978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-omics data integration by generative adversarial network.
    Ahmed KT; Sun J; Cheng S; Yong J; Zhang W
    Bioinformatics; 2021 Dec; 38(1):179-186. PubMed ID: 34415323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.