These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 35639931)
1. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. Zhang F; Chen F; Schwarzacher T; Heslop-Harrison JS; Teng N Ann Bot; 2023 Feb; 131(1):215-228. PubMed ID: 35639931 [TBL] [Abstract][Full Text] [Related]
2. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681 [TBL] [Abstract][Full Text] [Related]
3. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563 [TBL] [Abstract][Full Text] [Related]
4. The Chrysanthemum nankingense Genome Provides Insights into the Evolution and Diversification of Chrysanthemum Flowers and Medicinal Traits. Song C; Liu Y; Song A; Dong G; Zhao H; Sun W; Ramakrishnan S; Wang Y; Wang S; Li T; Niu Y; Jiang J; Dong B; Xia Y; Chen S; Hu Z; Chen F; Chen S Mol Plant; 2018 Dec; 11(12):1482-1491. PubMed ID: 30342096 [TBL] [Abstract][Full Text] [Related]
5. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. Cai Z; Liu H; He Q; Pu M; Chen J; Lai J; Li X; Jin W BMC Genomics; 2014 Nov; 15(1):1025. PubMed ID: 25425126 [TBL] [Abstract][Full Text] [Related]
7. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources. Choudhury RR; Neuhaus JM; Parisod C Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250 [TBL] [Abstract][Full Text] [Related]
8. Cytogenomic Characterization of Transposable Elements and Satellite DNA in Silva GS; Souza MM; Pamponét VCC; Micheli F; Melo CAF; Oliveira SG; Costa EA Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674353 [TBL] [Abstract][Full Text] [Related]
9. Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Ribeiro T; Vasconcelos E; Dos Santos KGB; Vaio M; Brasileiro-Vidal AC; Pedrosa-Harand A Chromosome Res; 2020 Jun; 28(2):139-153. PubMed ID: 31734754 [TBL] [Abstract][Full Text] [Related]
10. The Cassandra retrotransposon landscape in sugar beet (Beta vulgaris) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. Maiwald S; Weber B; Seibt KM; Schmidt T; Heitkam T Ann Bot; 2021 Jan; 127(1):91-109. PubMed ID: 33009553 [TBL] [Abstract][Full Text] [Related]
11. The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome. Bertioli DJ; Vidigal B; Nielen S; Ratnaparkhe MB; Lee TH; Leal-Bertioli SC; Kim C; Guimarães PM; Seijo G; Schwarzacher T; Paterson AH; Heslop-Harrison P; Araujo AC Ann Bot; 2013 Aug; 112(3):545-59. PubMed ID: 23828319 [TBL] [Abstract][Full Text] [Related]
12. The nature and organization of satellite DNAs in Alisawi O; Richert-Pöggeler KR; Heslop-Harrison JSP; Schwarzacher T Front Plant Sci; 2023; 14():1232588. PubMed ID: 37868307 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics. Khan H; Yuan H; Liu X; Nie Y; Majid M BMC Genomics; 2024 Jul; 25(1):687. PubMed ID: 38997681 [TBL] [Abstract][Full Text] [Related]
14. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Cavallini A; Natali L; Zuccolo A; Giordani T; Jurman I; Ferrillo V; Vitacolonna N; Sarri V; Cattonaro F; Ceccarelli M; Cionini PG; Morgante M Theor Appl Genet; 2010 Feb; 120(3):491-508. PubMed ID: 19826774 [TBL] [Abstract][Full Text] [Related]
15. Diversity and evolution of the repetitive genomic content in Cannabis sativa. Pisupati R; Vergara D; Kane NC BMC Genomics; 2018 Feb; 19(1):156. PubMed ID: 29466945 [TBL] [Abstract][Full Text] [Related]
16. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae). Begum R; Zakrzewski F; Menzel G; Weber B; Alam SS; Schmidt T Ann Bot; 2013 Jul; 112(1):123-34. PubMed ID: 23666888 [TBL] [Abstract][Full Text] [Related]
17. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome. Schmidt T; Kubis S; Heslop-Harrison JS Chromosome Res; 1995 Sep; 3(6):335-45. PubMed ID: 7551548 [TBL] [Abstract][Full Text] [Related]
18. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Barghini E; Natali L; Cossu RM; Giordani T; Pindo M; Cattonaro F; Scalabrin S; Velasco R; Morgante M; Cavallini A Genome Biol Evol; 2014 Apr; 6(4):776-91. PubMed ID: 24671744 [TBL] [Abstract][Full Text] [Related]
19. An Eruption of LTR Retrotransposons in the Autopolyploid Genomes of He J; Yu Z; Jiang J; Chen S; Fang W; Guan Z; Liao Y; Wang Z; Chen F; Wang H Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161296 [TBL] [Abstract][Full Text] [Related]
20. Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA. Pamponét VCC; Souza MM; Silva GS; Micheli F; de Melo CAF; de Oliveira SG; Costa EA; Corrêa RX BMC Genomics; 2019 Apr; 20(1):262. PubMed ID: 30940088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]