BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 35639931)

  • 1. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes.
    Zhang F; Chen F; Schwarzacher T; Heslop-Harrison JS; Teng N
    Ann Bot; 2023 Feb; 131(1):215-228. PubMed ID: 35639931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads.
    Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS
    BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Chrysanthemum nankingense Genome Provides Insights into the Evolution and Diversification of Chrysanthemum Flowers and Medicinal Traits.
    Song C; Liu Y; Song A; Dong G; Zhao H; Sun W; Ramakrishnan S; Wang Y; Wang S; Li T; Niu Y; Jiang J; Dong B; Xia Y; Chen S; Hu Z; Chen F; Chen S
    Mol Plant; 2018 Dec; 11(12):1482-1491. PubMed ID: 30342096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping.
    Cai Z; Liu H; He Q; Pu M; Chen J; Lai J; Li X; Jin W
    BMC Genomics; 2014 Nov; 15(1):1025. PubMed ID: 25425126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive DNA in eukaryotic genomes.
    Biscotti MA; Olmo E; Heslop-Harrison JS
    Chromosome Res; 2015 Sep; 23(3):415-20. PubMed ID: 26514350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources.
    Choudhury RR; Neuhaus JM; Parisod C
    Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytogenomic Characterization of Transposable Elements and Satellite DNA in
    Silva GS; Souza MM; Pamponét VCC; Micheli F; Melo CAF; Oliveira SG; Costa EA
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi.
    Ribeiro T; Vasconcelos E; Dos Santos KGB; Vaio M; Brasileiro-Vidal AC; Pedrosa-Harand A
    Chromosome Res; 2020 Jun; 28(2):139-153. PubMed ID: 31734754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cassandra retrotransposon landscape in sugar beet (Beta vulgaris) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability.
    Maiwald S; Weber B; Seibt KM; Schmidt T; Heitkam T
    Ann Bot; 2021 Jan; 127(1):91-109. PubMed ID: 33009553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome.
    Bertioli DJ; Vidigal B; Nielen S; Ratnaparkhe MB; Lee TH; Leal-Bertioli SC; Kim C; Guimarães PM; Seijo G; Schwarzacher T; Paterson AH; Heslop-Harrison P; Araujo AC
    Ann Bot; 2013 Aug; 112(3):545-59. PubMed ID: 23828319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature and organization of satellite DNAs in
    Alisawi O; Richert-Pöggeler KR; Heslop-Harrison JSP; Schwarzacher T
    Front Plant Sci; 2023; 14():1232588. PubMed ID: 37868307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome.
    Cavallini A; Natali L; Zuccolo A; Giordani T; Jurman I; Ferrillo V; Vitacolonna N; Sarri V; Cattonaro F; Ceccarelli M; Cionini PG; Morgante M
    Theor Appl Genet; 2010 Feb; 120(3):491-508. PubMed ID: 19826774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and evolution of the repetitive genomic content in Cannabis sativa.
    Pisupati R; Vergara D; Kane NC
    BMC Genomics; 2018 Feb; 19(1):156. PubMed ID: 29466945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae).
    Begum R; Zakrzewski F; Menzel G; Weber B; Alam SS; Schmidt T
    Ann Bot; 2013 Jul; 112(1):123-34. PubMed ID: 23666888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome.
    Schmidt T; Kubis S; Heslop-Harrison JS
    Chromosome Res; 1995 Sep; 3(6):335-45. PubMed ID: 7551548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome.
    Barghini E; Natali L; Cossu RM; Giordani T; Pindo M; Cattonaro F; Scalabrin S; Velasco R; Morgante M; Cavallini A
    Genome Biol Evol; 2014 Apr; 6(4):776-91. PubMed ID: 24671744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Eruption of LTR Retrotransposons in the Autopolyploid Genomes of
    He J; Yu Z; Jiang J; Chen S; Fang W; Guan Z; Liao Y; Wang Z; Chen F; Wang H
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA.
    Pamponét VCC; Souza MM; Silva GS; Micheli F; de Melo CAF; de Oliveira SG; Costa EA; Corrêa RX
    BMC Genomics; 2019 Apr; 20(1):262. PubMed ID: 30940088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional liaisons between transposable elements and satellite DNAs.
    Meštrović N; Mravinac B; Pavlek M; Vojvoda-Zeljko T; Šatović E; Plohl M
    Chromosome Res; 2015 Sep; 23(3):583-96. PubMed ID: 26293606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.