BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35639995)

  • 41. Theoretical study of phosphorescence in dye doped light emitting diodes.
    Minaev B; Jansson E; Agren H; Schrader S
    J Chem Phys; 2006 Dec; 125(23):234704. PubMed ID: 17190567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence.
    Ma X; Wang J; Tian H
    Acc Chem Res; 2019 Mar; 52(3):738-748. PubMed ID: 30816706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Folding-Induced Spin-Orbit Coupling Enhancement for Efficient Pure Organic Room-Temperature Phosphorescence.
    Pan G; Yang Z; Liu H; Wen Y; Zhang X; Shen Y; Zhou C; Zhang ST; Yang B
    J Phys Chem Lett; 2022 Feb; 13(6):1563-1570. PubMed ID: 35138107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence.
    Aizawa N; Matsumoto A; Yasuda T
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33579700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shorter Exciton Lifetimes via an External Heavy-Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light-Emitting Diodes.
    Einzinger M; Zhu T; de Silva P; Belger C; Swager TM; Van Voorhis T; Baldo MA
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28892200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrostatic pressure effect on excited state properties of room temperature phosphorescence molecules: A QM/MM study.
    Fan J; Liu H; Wang Y; Xie Z; Lin Z; Pang K
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 320():124626. PubMed ID: 38865890
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-Assembled Helical Arrays for the Stabilization of the Triplet State.
    Nidhankar AD; Goudappagouda ; Mohana Kumari DS; Chaubey SK; Nayak R; Gonnade RG; Kumar GVP; Krishnan R; Babu SS
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):13079-13085. PubMed ID: 32367621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence.
    Yang Z; Mao Z; Zhang X; Ou D; Mu Y; Zhang Y; Zhao C; Liu S; Chi Z; Xu J; Wu YC; Lu PY; Lien A; Bryce MR
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2181-5. PubMed ID: 26836346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs.
    Ma H; Peng Q; An Z; Huang W; Shuai Z
    J Am Chem Soc; 2019 Jan; 141(2):1010-1015. PubMed ID: 30565929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism.
    Kuno S; Akeno H; Ohtani H; Yuasa H
    Phys Chem Chem Phys; 2015 Jun; 17(24):15989-95. PubMed ID: 26027521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heavy-Atom-Free Room-Temperature Phosphorescent Organic Light-Emitting Diodes Enabled by Excited States Engineering.
    Higginbotham HF; Okazaki M; de Silva P; Minakata S; Takeda Y; Data P
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2899-2907. PubMed ID: 33404215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence.
    Cai X; Qiao Z; Li M; Wu X; He Y; Jiang X; Cao Y; Su SJ
    Angew Chem Int Ed Engl; 2019 Sep; 58(38):13522-13531. PubMed ID: 31267665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unveiling the mechanisms of organic room-temperature phosphorescence in various surrounding environments: a computational study.
    Zhao A; Wu X; Jiang X; Gao J; Wang J; Shen W
    Phys Chem Chem Phys; 2021 Dec; 23(47):26813-26821. PubMed ID: 34817494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Harvesting highly electronically excited energy to triplet manifolds: state-dependent intersystem crossing rate in Os(II) and Ag(I) complexes.
    Hsu CC; Lin CC; Chou PT; Lai CH; Hsu CW; Lin CH; Chi Y
    J Am Chem Soc; 2012 May; 134(18):7715-24. PubMed ID: 22515479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intermolecular donor-acceptor stacking to suppress triplet exciton diffusion for long-persistent organic room-temperature phosphorescence.
    Ma J; Dou J; Xu N; Wang G; Duan Y; Liao Y; Yi Y; Geng H
    J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38421074
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of Localized Electronic Structures Caused by π Degeneracy Due to Highly Symmetric Heavy Atom-Free Conjugated Molecular Crystals Leading to Efficient Persistent Room-Temperature Phosphorescence.
    Hirata S
    Adv Sci (Weinh); 2019 Jul; 6(14):1900410. PubMed ID: 31380211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unraveling the Important Role of High-Lying Triplet-Lowest Excited Singlet Transitions in Achieving Highly Efficient Deep-Blue AIE-Based OLEDs.
    Guo X; Yuan P; Fan J; Qiao X; Yang D; Dai Y; Sun Q; Qin A; Tang BZ; Ma D
    Adv Mater; 2021 Mar; 33(11):e2006953. PubMed ID: 33565188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Advances in Organic Light-Emitting Diodes Based on Pure Organic Room Temperature Phosphorescence Materials.
    Zhan G; Liu Z; Bian Z; Huang C
    Front Chem; 2019; 7():305. PubMed ID: 31134182
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Breaking the Efficiency Limit of Deep-Blue Fluorescent OLEDs Based on Anthracene Derivatives.
    Lim H; Woo SJ; Ha YH; Kim YH; Kim JJ
    Adv Mater; 2022 Jan; 34(1):e2100161. PubMed ID: 34687094
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purely organic electroluminescent material realizing 100% conversion from electricity to light.
    Kaji H; Suzuki H; Fukushima T; Shizu K; Suzuki K; Kubo S; Komino T; Oiwa H; Suzuki F; Wakamiya A; Murata Y; Adachi C
    Nat Commun; 2015 Oct; 6():8476. PubMed ID: 26477390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.