BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35640004)

  • 21. Automated segmentation of magnetic resonance bone marrow signal: a feasibility study.
    von Brandis E; Jenssen HB; Avenarius DFM; Bjørnerud A; Flatø B; Tomterstad AH; Lilleby V; Rosendahl K; Sakinis T; Zadig PKK; Müller LO
    Pediatr Radiol; 2022 May; 52(6):1104-1114. PubMed ID: 35107593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer.
    van Griethuysen JJM; Lambregts DMJ; Trebeschi S; Lahaye MJ; Bakers FCH; Vliegen RFA; Beets GL; Aerts HJWL; Beets-Tan RGH
    Abdom Radiol (NY); 2020 Mar; 45(3):632-643. PubMed ID: 31734709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
    Li R; Guo Y; Zhao Z; Chen M; Liu X; Gong G; Wang L
    Eur Radiol; 2023 May; 33(5):3521-3531. PubMed ID: 36695903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma.
    Albano D; Patti C; Lagalla R; Midiri M; Galia M
    J Magn Reson Imaging; 2017 Apr; 45(4):1082-1089. PubMed ID: 27603267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation.
    Qu J; Zhang W; Shu X; Wang Y; Wang L; Xu M; Yao L; Hu N; Tang B; Zhang L; Lui S
    Eur Radiol; 2023 Oct; 33(10):6648-6658. PubMed ID: 37186214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CT-based deep learning segmentation of ovarian cancer and the stability of the extracted radiomics features.
    Wang Y; Wang M; Cao P; Wong EMF; Ho G; Lam TPW; Han L; Lee EYP
    Quant Imaging Med Surg; 2023 Aug; 13(8):5218-5229. PubMed ID: 37581064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy.
    Rodríguez Outeiral R; González PJ; Schaake EE; van der Heide UA; Simões R
    Radiat Oncol; 2023 May; 18(1):91. PubMed ID: 37248490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction and diagnosis of bone metastases in well-differentiated gastro-entero-pancreatic endocrine cancer: a prospective comparison of whole body magnetic resonance imaging and somatostatin receptor scintigraphy.
    Leboulleux S; Dromain C; Vataire AL; Malka D; Aupérin A; Lumbroso J; Duvillard P; Elias D; Hartl DM; De Baere T; Guigay J; Schlumberger M; Ducreux M; Baudin E
    J Clin Endocrinol Metab; 2008 Aug; 93(8):3021-8. PubMed ID: 18522978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of alternative manual and automated deep learning segmentation techniques for the prediction of benign and malignant lung nodules.
    Selby HM; Mukherjee P; Parham C; Malik SB; Gevaert O; Napel S; Shah RP
    J Med Imaging (Bellingham); 2023 Jul; 10(4):044006. PubMed ID: 37564098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation.
    Yang Z; Chen M; Kazemimoghadam M; Ma L; Stojadinovic S; Timmerman R; Dan T; Wardak Z; Lu W; Gu X
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34952535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on Potential Grading Discrimination Using a Machine Learning Model.
    Russo G; Stefano A; Alongi P; Comelli A; Catalfamo B; Mantarro C; Longo C; Altieri R; Certo F; Cosentino S; Sabini MG; Richiusa S; Barbagallo GMV; Ippolito M
    Curr Oncol; 2021 Dec; 28(6):5318-5331. PubMed ID: 34940083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fully automatic deep learning algorithm to segment rectal Cancer on MR images: a multi-center study.
    Panic J; Defeudis A; Mazzetti S; Rosati S; Giannetto G; Micilotta M; Vassallo L; Gatti M; Regge D; Balestra G; Giannini V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():5066-5069. PubMed ID: 36086406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and Evaluation of Machine Learning in Whole-Body Magnetic Resonance Imaging for Detecting Metastases in Patients With Lung or Colon Cancer: A Diagnostic Test Accuracy Study.
    Rockall AG; Li X; Johnson N; Lavdas I; Santhakumaran S; Prevost AT; Punwani S; Goh V; Barwick TD; Bharwani N; Sandhu A; Sidhu H; Plumb A; Burn J; Fagan A; Wengert GJ; Koh DM; Reczko K; Dou Q; Warwick J; Liu X; Messiou C; Tunariu N; Boavida P; Soneji N; Johnston EW; Kelly-Morland C; De Paepe KN; Sokhi H; Wallitt K; Lakhani A; Russell J; Salib M; Vinnicombe S; Haq A; Aboagye EO; Taylor S; Glocker B
    Invest Radiol; 2023 Dec; 58(12):823-831. PubMed ID: 37358356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen.
    Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H
    Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001.
    Liang Y; Lee K; Bovi JA; Palmer JD; Brown PD; Gondi V; Tomé WA; Benzinger TLS; Mehta MP; Li XA
    Int J Radiat Oncol Biol Phys; 2022 Nov; 114(3):529-536. PubMed ID: 35787927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of tumor burden in multiple myeloma by atlas-based semi-automatic segmentation of WB-DWI.
    Almeida SD; Santinha J; Oliveira FPM; Ip J; Lisitskaya M; Lourenço J; Uysal A; Matos C; João C; Papanikolaou N
    Cancer Imaging; 2020 Jan; 20(1):6. PubMed ID: 31931880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning Improves Speed and Accuracy of Prostate Gland Segmentations on Magnetic Resonance Imaging for Targeted Biopsy.
    Soerensen SJC; Fan RE; Seetharaman A; Chen L; Shao W; Bhattacharya I; Kim YH; Sood R; Borre M; Chung BI; To'o KJ; Rusu M; Sonn GA
    J Urol; 2021 Sep; 206(3):604-612. PubMed ID: 33878887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.