These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
3. Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts. Ho MH; O'Hagan M; Dupuis M; DuBois DL; Bullock RM; Shaw WJ; Raugei S Dalton Trans; 2015 Jun; 44(24):10969-79. PubMed ID: 25999141 [TBL] [Abstract][Full Text] [Related]
4. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere. Yang JY; Smith SE; Liu T; Dougherty WG; Hoffert WA; Kassel WS; Rakowski DuBois M; DuBois DL; Bullock RM J Am Chem Soc; 2013 Jul; 135(26):9700-12. PubMed ID: 23631473 [TBL] [Abstract][Full Text] [Related]
5. Effect of Bridgehead Steric Bulk on the Intramolecular C-H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P2N2 Pendant Amine Ligand. Zheng D; Wang M; Wang N; Cheng M; Sun L Inorg Chem; 2016 Jan; 55(2):411-8. PubMed ID: 26230977 [TBL] [Abstract][Full Text] [Related]
6. Reduction of oxygen catalyzed by nickel diphosphine complexes with positioned pendant amines. Yang JY; Bullock RM; Dougherty WG; Kassel WS; Twamley B; DuBois DL; Rakowski DuBois M Dalton Trans; 2010 Mar; 39(12):3001-10. PubMed ID: 20221533 [TBL] [Abstract][Full Text] [Related]
7. The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes. Raugei S; Chen S; Ho MH; Ginovska-Pangovska B; Rousseau RJ; Dupuis M; DuBois DL; Bullock RM Chemistry; 2012 May; 18(21):6493-506. PubMed ID: 22532421 [TBL] [Abstract][Full Text] [Related]
8. Production of hydrogen by electrocatalysis: making the H-H bond by combining protons and hydrides. Bullock RM; Appel AM; Helm ML Chem Commun (Camb); 2014 Mar; 50(24):3125-43. PubMed ID: 24448464 [TBL] [Abstract][Full Text] [Related]
9. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase. Chen X; Jing Y; Yang X Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505 [TBL] [Abstract][Full Text] [Related]
10. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. O'Hagan M; Shaw WJ; Raugei S; Chen S; Yang JY; Kilgore UJ; DuBois DL; Bullock RM J Am Chem Soc; 2011 Sep; 133(36):14301-12. PubMed ID: 21595478 [TBL] [Abstract][Full Text] [Related]
11. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Rakowski DuBois M; DuBois DL Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2. Chen X; Yang X J Phys Chem Lett; 2016 Mar; 7(6):1035-41. PubMed ID: 26937854 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, characterization, and reactivity of Fe complexes containing cyclic diazadiphosphine ligands: the role of the pendant base in heterolytic cleavage of H2. Liu T; Chen S; O'Hagan MJ; Rakowski DuBois M; Bullock RM; DuBois DL J Am Chem Soc; 2012 Apr; 134(14):6257-72. PubMed ID: 22394350 [TBL] [Abstract][Full Text] [Related]
14. High catalytic rates for hydrogen production using nickel electrocatalysts with seven-membered cyclic diphosphine ligands containing one pendant amine. Stewart MP; Ho MH; Wiese S; Lindstrom ML; Thogerson CE; Raugei S; Bullock RM; Helm ML J Am Chem Soc; 2013 Apr; 135(16):6033-46. PubMed ID: 23384205 [TBL] [Abstract][Full Text] [Related]
15. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation. Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095 [TBL] [Abstract][Full Text] [Related]
16. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Wilson AD; Shoemaker RK; Miedaner A; Muckerman JT; DuBois DL; DuBois MR Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6951-6. PubMed ID: 17360385 [TBL] [Abstract][Full Text] [Related]
17. Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid. Roy S; Sharma B; Pécaut J; Simon P; Fontecave M; Tran PD; Derat E; Artero V J Am Chem Soc; 2017 Mar; 139(10):3685-3696. PubMed ID: 28206761 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of Pendant Bases into Rh(diphosphine)2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO2 Hydrogenation Activity of [Rh(P2N2)2](+) Complexes. Lilio AM; Reineke MH; Moore CE; Rheingold AL; Takase MK; Kubiak CP J Am Chem Soc; 2015 Jul; 137(25):8251-60. PubMed ID: 26042557 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines. Liao Q; Liu T; Johnson SI; Klug CM; Wiedner ES; Morris Bullock R; DuBois DL Dalton Trans; 2019 Apr; 48(15):4867-4878. PubMed ID: 30882832 [TBL] [Abstract][Full Text] [Related]
20. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine. Zheng D; Wang M; Chen L; Wang N; Sun L Inorg Chem; 2014 Feb; 53(3):1555-61. PubMed ID: 24422466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]