These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35640428)

  • 1. GABA keeps nitric oxide in balance by regulating GSNOR to enhance disease resistance of harvested tomato against Botrytis cinerea.
    Wang X; Cao J; Qiao J; Pan J; Zhang S; Li Q; Wang Q; Gong B; Shi J
    Food Chem; 2022 Oct; 392():133299. PubMed ID: 35640428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel and conserved functions of S-nitrosoglutathione reductase in tomato.
    Hussain A; Yun BW; Kim JH; Gupta KJ; Hyung NI; Loake GJ
    J Exp Bot; 2019 Sep; 70(18):4877-4886. PubMed ID: 31089684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of SlGSNOR impairs in vitro shoot proliferation and developmental architecture in tomato but confers enhanced disease resistance.
    Rasool G; Buchholz G; Yasmin T; Shabbir G; Abbasi NA; Malik SI
    J Plant Physiol; 2021 Jun; 261():153433. PubMed ID: 33990008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Crucial Role of SlGSNOR in Regulating Postharvest Tomato Fruit Ripening.
    Liu Z; Huang D; Yao Y; Pan X; Zhang Y; Huang Y; Ding Z; Wang C; Liao W
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473974
    [No Abstract]   [Full Text] [Related]  

  • 5. Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato.
    Małolepsza U; Rózalska S
    Plant Physiol Biochem; 2005 Jun; 43(6):623-35. PubMed ID: 15922611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of S-nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato.
    Zuccarelli R; Rodríguez-Ruiz M; Silva FO; Gomes LDL; Lopes-Oliveira PJ; Zsögön A; Andrade SCS; Demarco D; Corpas FJ; Peres LEP; Rossi M; Freschi L
    J Exp Bot; 2023 Oct; 74(20):6349-6368. PubMed ID: 37157899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. l-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids.
    Sun C; Jin L; Cai Y; Huang Y; Zheng X; Yu T
    Food Chem; 2019 Sep; 293():263-270. PubMed ID: 31151610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z
    Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SlARG2 contributes to MeJA-induced defense responses to Botrytis cinerea in tomato fruit.
    Min D; Ai W; Zhou J; Li J; Zhang X; Li Z; Shi Z; Li F; Li X; Guo Y
    Pest Manag Sci; 2020 Sep; 76(9):3292-3301. PubMed ID: 32384210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea.
    Sun G; Feng C; Zhang A; Zhang Y; Chang D; Wang Y; Ma Q
    World J Microbiol Biotechnol; 2019 Feb; 35(2):36. PubMed ID: 30712096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit.
    Zheng Y; Hong H; Chen L; Li J; Sheng J; Shen L
    J Agric Food Chem; 2014 Feb; 62(6):1390-6. PubMed ID: 24490996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-nitrosoglutathione Reductase-Mediated Nitric Oxide Affects Axillary Buds Outgrowth of Solanum lycopersicum L. by Regulating Auxin and Cytokinin Signaling.
    Yan Y; Shi Q; Gong B
    Plant Cell Physiol; 2021 Jul; 62(3):458-471. PubMed ID: 33493306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.
    Liu B; Hong YB; Zhang YF; Li XH; Huang L; Zhang HJ; Li DY; Song FM
    Plant Sci; 2014 Oct; 227():145-56. PubMed ID: 25219316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures--Botrytis cinerea interaction.
    Pietrowska E; Różalska S; Kaźmierczak A; Nawrocka J; Małolepsza U
    Protoplasma; 2015 Jan; 252(1):307-19. PubMed ID: 25064634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomato Root Growth Inhibition by Salinity and Cadmium Is Mediated By S-Nitrosative Modifications of ROS Metabolic Enzymes Controlled by S-Nitrosoglutathione Reductase.
    Jedelská T; Kraiczová VŠ; Berčíková L; Činčalová L; Luhová L; Petřivalský M
    Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31438648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea.
    Sun G; Wang H; Shi B; Shangguan N; Wang Y; Ma Q
    Pestic Biochem Physiol; 2017 Nov; 143():191-198. PubMed ID: 29183591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.