These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35640506)
1. Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst. Zhu Y; Ji H; He K; Blaney L; Xu T; Zhao D Water Res; 2022 Jul; 220():118650. PubMed ID: 35640506 [TBL] [Abstract][Full Text] [Related]
2. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. Li F; Wei Z; He K; Blaney L; Cheng X; Xu T; Liu W; Zhao D Water Res; 2020 Oct; 185():116219. PubMed ID: 32731078 [TBL] [Abstract][Full Text] [Related]
3. Metal-doped carbon-supported/modified titanate nanotubes for perfluorooctane sulfonate degradation in water: Effects of preparation conditions, mechanisms, and parameter optimization. Zhu Y; Xu T; Zhao D Sci Total Environ; 2022 Dec; 853():158573. PubMed ID: 36075423 [TBL] [Abstract][Full Text] [Related]
4. Concentrate and degrade PFOA with a photo-regenerable composite of In-doped TNTs@AC. Arana Juve JM; Li F; Zhu Y; Liu W; Ottosen LDM; Zhao D; Wei Z Chemosphere; 2022 Aug; 300():134495. PubMed ID: 35390412 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the photocatalytic degradability of PFOA, PFOS and GenX using Fe-zeolite in water. Wen J; Li H; Ottosen LDM; Lundqvist J; Vergeynst L Chemosphere; 2023 Dec; 344():140344. PubMed ID: 37802482 [TBL] [Abstract][Full Text] [Related]
6. High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water. Liu W; Cai Z; Zhao X; Wang T; Li F; Zhao D Environ Sci Technol; 2016 Oct; 50(20):11174-11183. PubMed ID: 27626301 [TBL] [Abstract][Full Text] [Related]
7. Degradation of PFOA Substitute: GenX (HFPO-DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Bao Y; Deng S; Jiang X; Qu Y; He Y; Liu L; Chai Q; Mumtaz M; Huang J; Cagnetta G; Yu G Environ Sci Technol; 2018 Oct; 52(20):11728-11734. PubMed ID: 30207460 [TBL] [Abstract][Full Text] [Related]
8. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi Zhu N; Li C; Bu L; Tang C; Wang S; Duan P; Yao L; Tang J; Dionysiou DD; Wu Y J Hazard Mater; 2020 Feb; 384():121258. PubMed ID: 32028547 [TBL] [Abstract][Full Text] [Related]
9. Pre-accumulation and in-situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material: Intermediates, DFT calculation, and ecotoxicity. Dang C; Sun F; Jiang H; Huang T; Liu W; Chen X; Ji H J Hazard Mater; 2020 Dec; 400():123225. PubMed ID: 32585518 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and proposed mechanisms of hexafluoropropylene oxide dimer acid (GenX) degradation via vacuum-UV (VUV) photolysis and VUV/sulfite processes. Kim J; Kim T; Park H; Kim MK; Eom S; Choe Y; Choe JK; Zoh KD J Hazard Mater; 2024 Feb; 463():132864. PubMed ID: 37907009 [TBL] [Abstract][Full Text] [Related]
11. Efficient photocatalytic degradation of perfluorooctanoic acid by bismuth nanoparticle modified titanium dioxide. Wang Z; Li M; Cao W; Liu Z; Kong D; Jiang W Sci Total Environ; 2024 Jun; 927():172028. PubMed ID: 38575014 [TBL] [Abstract][Full Text] [Related]
12. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation. Zhao X; Du P; Cai Z; Wang T; Fu J; Liu W Environ Pollut; 2018 Jan; 232():580-590. PubMed ID: 28988872 [TBL] [Abstract][Full Text] [Related]
13. Aqueous and solid phase photocatalytic degradation of perfluorooctane sulfonate by carbon- and Fe-modified bismuth oxychloride. Rather RA; Xu T; Leary RN; Zhao D Chemosphere; 2024 Jan; 346():140585. PubMed ID: 38303393 [TBL] [Abstract][Full Text] [Related]
14. Silver nanoparticles decorated anatase TiO2₂nanotubes for removal of pentachlorophenol from water. Yu L; Yang X; Ye Y; Peng X; Wang D J Colloid Interface Sci; 2015 Sep; 453():100-106. PubMed ID: 25982935 [TBL] [Abstract][Full Text] [Related]
15. Visible-light-assisted photocatalytic activity of bismuth-TiO Ali I; Kim JO Chemosphere; 2018 Sep; 207():285-292. PubMed ID: 29803877 [TBL] [Abstract][Full Text] [Related]
16. A 'Concentrate-&-Destroy' technology for enhanced removal and destruction of per- and polyfluoroalkyl substances in municipal landfill leachate. Tian S; Xu T; Fang L; Zhu Y; Li F; Leary RN; Zhang M; Zhao D; Soong TY; Shi H Sci Total Environ; 2021 Oct; 791():148124. PubMed ID: 34126481 [TBL] [Abstract][Full Text] [Related]
17. Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. Zhang L; Ghimire P; Phuriragpitikhon J; Jiang B; Gonçalves AAS; Jaroniec M J Colloid Interface Sci; 2018 Mar; 513():82-91. PubMed ID: 29132108 [TBL] [Abstract][Full Text] [Related]
18. Addressing Short-Chain PFAS Contamination in Water with Nanofibrous Adsorbent/Filter Material from Electrospinning. Mantripragada S; Obare SO; Zhang L Acc Chem Res; 2023 Jun; 56(11):1271-1278. PubMed ID: 36633899 [TBL] [Abstract][Full Text] [Related]
19. GenX is not always a better fluorinated organic compound than PFOA: A critical review on aqueous phase treatability by adsorption and its associated cost. Heidari H; Abbas T; Ok YS; Tsang DCW; Bhatnagar A; Khan E Water Res; 2021 Oct; 205():117683. PubMed ID: 34607087 [TBL] [Abstract][Full Text] [Related]
20. Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi₂O₃/g-C₃N₄ with high visible light activity. Zhang J; Hu Y; Jiang X; Chen S; Meng S; Fu X J Hazard Mater; 2014 Sep; 280():713-22. PubMed ID: 25232654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]