These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 35640509)
1. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: Performance and dominant routine of reactive species production. Ling C; Wu S; Han J; Dong T; Zhu C; Li X; Xu L; Zhang Y; Zhou M; Pan Y Water Res; 2022 Jul; 220():118676. PubMed ID: 35640509 [TBL] [Abstract][Full Text] [Related]
2. Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: Major radicals, the role of sulfur species, and particle size effect. Ling C; Wu S; Dong T; Dong H; Wang Z; Pan Y; Han J J Hazard Mater; 2022 Feb; 423(Pt A):127082. PubMed ID: 34488104 [TBL] [Abstract][Full Text] [Related]
3. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. Zong Y; Zhang H; Shao Y; Ji W; Zeng Y; Xu L; Wu D J Hazard Mater; 2022 Feb; 423(Pt A):126991. PubMed ID: 34482081 [TBL] [Abstract][Full Text] [Related]
4. Insight in sulfadiazine degradation by peroxymonosulfate activated by polydopamine-derived nitrogen-doped carbon supported CoFe Chen Z; Guo J; Li S; Pu L; Huang L Ecotoxicol Environ Saf; 2024 Oct; 285():117126. PubMed ID: 39369664 [TBL] [Abstract][Full Text] [Related]
5. Enhanced the removal of norfloxacin by oxalated zero-valent iron with rich surface Fe(II) sites activating the chlorite. Zheng B; Zhou L; Xue C; Wang K; Fang Z J Hazard Mater; 2024 Dec; 480():135851. PubMed ID: 39298950 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Oxidation of Organic Contaminants by Iron(II)-Activated Periodate: The Significance of High-Valent Iron-Oxo Species. Zong Y; Shao Y; Zeng Y; Shao B; Xu L; Zhao Z; Liu W; Wu D Environ Sci Technol; 2021 Jun; 55(11):7634-7642. PubMed ID: 33706511 [TBL] [Abstract][Full Text] [Related]
7. Performance and mechanisms of sulfadiazine removal using persulfate activated by Fe Liu T; Wu K; Wang M; Jing C; Chen Y; Yang S; Jin P Chemosphere; 2021 Jan; 262():127845. PubMed ID: 32799147 [TBL] [Abstract][Full Text] [Related]
8. pH-dependent mechanisms of sulfadiazine degradation by natural pyrite-driven heterogeneous Fenton-like reactions. Lin X; Hu J; Mo Z; Wang Z; Wang R; Liang J J Environ Manage; 2024 Aug; 365():121607. PubMed ID: 38941847 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe Du J; Guo W; Wang H; Yin R; Zheng H; Feng X; Che D; Ren N Water Res; 2018 Jul; 138():323-332. PubMed ID: 29627708 [TBL] [Abstract][Full Text] [Related]
10. Efficient peroxymonosulfate activation by nanoscale zerovalent iron for removal of sulfadiazine and sulfadiazine resistance bacteria: Sulfidated modification or not. Liu Y; Gao J; Wang Q; Chen H; Zhang Y; Fu X J Hazard Mater; 2024 May; 469():133869. PubMed ID: 38422733 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic insight into the degradation of sulfadiazine by electro-Fenton system: Role of different reactive species. Zheng Y; Yang J; Li M; Zhu Y; Liang J; Yu D; Wang Z; Pei J J Hazard Mater; 2024 May; 469():134063. PubMed ID: 38508112 [TBL] [Abstract][Full Text] [Related]
12. Dramatic enhancement effects of l-cysteine on the degradation of sulfadiazine in Fe Lu J; Wang T; Zhou Y; Cui C; Ao Z; Zhou Y J Hazard Mater; 2020 Feb; 383():121133. PubMed ID: 31536866 [TBL] [Abstract][Full Text] [Related]
13. Peroxymonosulfate activation by iron(III)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex. Li H; Shan C; Li W; Pan B Water Res; 2018 Dec; 147():233-241. PubMed ID: 30312796 [TBL] [Abstract][Full Text] [Related]
14. Efficient removal of 3,6-dichlorocarbazole with Fe Kang X; Li D; Chu L; Zhao X; Song X Environ Technol; 2023 Jun; 44(15):2201-2214. PubMed ID: 34967702 [TBL] [Abstract][Full Text] [Related]
15. Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron. Cai J; Zhang Y Environ Sci Pollut Res Int; 2022 Feb; 29(6):8281-8293. PubMed ID: 34482464 [TBL] [Abstract][Full Text] [Related]
16. Electric field-enhanced heterogeneous catalytic ozonation (EHCO) process for sulfadiazine removal: The role of cathodic reduction. Yin X; Zhang J; Chen S; Li W; Zhu H; Wei K; Zhang Y; Chen H; Han W Chemosphere; 2024 Mar; 351():141226. PubMed ID: 38228193 [TBL] [Abstract][Full Text] [Related]
17. Carbon-doped defect MoS Xiao C; Hu Y; Li Q; Liu J; Li X; Shi Y; Chen Y; Cheng J Sci Total Environ; 2023 Feb; 858(Pt 1):159587. PubMed ID: 36270354 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of Fe/C catalysts based on pyrolysis of ferric citrate and its peroxymonosulfate activation performance to degrade sulfadiazine in water. Zhao B; Yang J RSC Adv; 2024 May; 14(22):15582-15590. PubMed ID: 38746842 [TBL] [Abstract][Full Text] [Related]
19. Activation of peroxymonosulfate by molybdenum disulfide-mediated traces of Fe(III) for sulfadiazine degradation. Li Y; Feng Y; Yang B; Yang Z; Shih K Chemosphere; 2021 Nov; 283():131212. PubMed ID: 34146879 [TBL] [Abstract][Full Text] [Related]
20. Sulfadiazine removal using green zero-valent iron nanoparticles: A low-cost and eco-friendly alternative technology for water remediation. Conde-Cid M; Paíga P; Moreira MM; Albergaria JT; Álvarez-Rodríguez E; Arias-Estévez M; Delerue-Matos C Environ Res; 2021 Jul; 198():110451. PubMed ID: 33188761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]