These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35640554)

  • 21. Individual-finger motor imagery classification: a data-driven approach with Shapley-informed augmentation.
    Alsuradi H; Khattak A; Fakhry A; Eid M
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38479013
    [No Abstract]   [Full Text] [Related]  

  • 22. MI-based BCI with accurate real-time three-class classification processing and light control application.
    Zhang J; Xu B; Lou X; Wu Y; Shen X
    Proc Inst Mech Eng H; 2023 Aug; 237(8):1017-1028. PubMed ID: 37550947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An in-depth survey on Deep Learning-based Motor Imagery Electroencephalogram (EEG) classification.
    Wang X; Liesaputra V; Liu Z; Wang Y; Huang Z
    Artif Intell Med; 2024 Jan; 147():102738. PubMed ID: 38184362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A two-stage transformer based network for motor imagery classification.
    Chaudhary P; Dhankhar N; Singhal A; Rana KPS
    Med Eng Phys; 2024 Jun; 128():104154. PubMed ID: 38697881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Front-End Replication Dynamic Window (FRDW) for Online Motor Imagery Classification.
    Chen X; An J; Wu H; Li S; Liu B; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3906-3914. PubMed ID: 37792658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of the Correlation between the Motor Ability of the Individual Upper Limbs and Motor Imagery Induced Neural Activities.
    Gu B; Wang K; Chen L; He J; Zhang D; Xu M; Wang Z; Ming D
    Neuroscience; 2023 Oct; 530():56-65. PubMed ID: 37652289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alignment-Based Adversarial Training (ABAT) for Improving the Robustness and Accuracy of EEG-Based BCIs.
    Chen X; Wang Z; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1703-1714. PubMed ID: 38648154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal-spatial convolutional residual network for decoding attempted movement related EEG signals of subjects with spinal cord injury.
    Mirzabagherian H; Menhaj MB; Suratgar AA; Talebi N; Abbasi Sardari MR; Sajedin A
    Comput Biol Med; 2023 Sep; 164():107159. PubMed ID: 37531857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach.
    Habashy AG; Azab AM; Eldawlatly S; Aly GM
    J Neural Eng; 2024 Jul; ():. PubMed ID: 39029497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.
    Shin J; Kwon J; Im CH
    Front Neuroinform; 2018; 12():5. PubMed ID: 29527160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review.
    Palumbo A; Gramigna V; Calabrese B; Ielpo N
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards user-centric BCI design: Markov chain-based user assessment for mental imagery EEG-BCIs.
    Ivanov N; Lio A; Chau T
    J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 38128128
    [No Abstract]   [Full Text] [Related]  

  • 33. How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Imagery.
    Kocejko T; Matuszkiewicz N; Durawa P; Madajczak A; Kwiatkowski J
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions.
    Gutierrez-Martinez J; Mercado-Gutierrez JA; Carvajal-Gámez BE; Rosas-Trigueros JL; Contreras-Martinez AE
    Front Hum Neurosci; 2021; 15():772837. PubMed ID: 34899220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudo-online framework for BCI evaluation: a MOABB perspective using various MI and SSVEP datasets.
    Carrara I; Papadopoulo T
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38113535
    [No Abstract]   [Full Text] [Related]  

  • 36. A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification.
    Liu T; Yang D
    Sci Rep; 2021 May; 11(1):10758. PubMed ID: 34031436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Channel Selection for Stereo- Electroencephalography (SEEG)-Based Invasive Brain-Computer Interfaces Using Deep Learning Methods.
    Wu X; Li G; Gao X; Metcalfe B; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():800-811. PubMed ID: 38349834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BrainWave-Scattering Net: a lightweight network for EEG-based motor imagery recognition.
    Barmpas K; Panagakis Y; Adamos DA; Laskaris N; Zafeiriou S
    J Neural Eng; 2023 Sep; 20(5):. PubMed ID: 37678229
    [No Abstract]   [Full Text] [Related]  

  • 39. Information Theoretic Feature Transformation Learning for Brain Interfaces.
    Ozdenizci O; Erdogmus D
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):69-78. PubMed ID: 30932828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing motor imagery BCI models with hard trials removal and model refinement.
    R V; Ramasubba Reddy M
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38781932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.