BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35640724)

  • 1. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis.
    Li C; Liu C
    Environ Pollut; 2022 Aug; 307():119553. PubMed ID: 35640724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum.
    Audenaert K; Callewaert E; Höfte M; De Saeger S; Haesaert G
    BMC Microbiol; 2010 Apr; 10():112. PubMed ID: 20398299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and
    Li C; Fan S; Wen Y; Tan Z; Liu C
    J Agric Food Chem; 2021 Feb; 69(5):1684-1692. PubMed ID: 33522237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fungicidal Activity of Tebuconazole Enantiomers against Fusarium graminearum and Its Selective Effect on DON Production under Different Conditions.
    Diao X; Han Y; Liu C
    J Agric Food Chem; 2018 Apr; 66(14):3637-3643. PubMed ID: 29562133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of triazole-based fungicides for fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis.
    Paul PA; Lipps PE; Hershman DE; McMullen MP; Draper MA; Madden LV
    Phytopathology; 2008 Sep; 98(9):999-1011. PubMed ID: 18943738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite.
    Zhang Z; Gao B; He Z; Li L; Zhang Q; Kaziem AE; Wang M
    Pestic Biochem Physiol; 2019 Oct; 160():112-118. PubMed ID: 31519245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pydiflumetofen Co-Formulated with Prothioconazole: A Novel Fungicide for Fusarium Head Blight and Deoxynivalenol Control.
    Edwards SG
    Toxins (Basel); 2022 Jan; 14(1):. PubMed ID: 35051011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus
    Jian Y; Chen X; Ahmed T; Shang Q; Zhang S; Ma Z; Yin Y
    J Adv Res; 2022 May; 38():1-12. PubMed ID: 35572400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance.
    Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M
    Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum.
    Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C
    Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum.
    Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR
    Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of mycotoxins in wheat grains exposed to fungicides on fusarium head blight control in southern Brazil.
    Marques LN; Pizzutti IR; Balardin RS; Dos Santos ID; Dias JV; Stefanello MT; Serafini PT
    J Environ Sci Health B; 2017 Apr; 52(4):244-250. PubMed ID: 28080216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum.
    Bian C; Duan Y; Xiu Q; Wang J; Tao X; Zhou M
    Mol Plant Pathol; 2021 Jul; 22(7):769-785. PubMed ID: 33934484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity and Resistance Risk Assessment of
    Liu J; Jiang J; Guo X; Qian L; Xu J; Che Z; Chen G; Liu S
    Plant Dis; 2022 Aug; 106(8):2097-2104. PubMed ID: 35171639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Five Succinate Dehydrogenase Inhibitors on DON Biosynthesis of
    Xu C; Li M; Zhou Z; Li J; Chen D; Duan Y; Zhou M
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31096549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deoxynivalenol in
    He Z; Zhang J; Shi D; Gao B; Wang Z; Zhang Y; Wang M
    J Agric Food Chem; 2021 Sep; 69(34):9735-9742. PubMed ID: 34427095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of post-anthesis rainfall, fungicide and harvesting time on the concentration of deoxynivalenol and zearalenone in wheat.
    Kharbikar LL; Dickin ET; Edwards SG
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(12):2075-85. PubMed ID: 26361223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol.
    Mesterházy A; Tóth B; Varga M; Bartók T; Szabó-Hevér A; Farády L; Lehoczki-Krsjak S
    Toxins (Basel); 2011 Nov; 3(11):1453-83. PubMed ID: 22174980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol.
    Moretti A; Panzarini G; Somma S; Campagna C; Ravaglia S; Logrieco AF; Solfrizzo M
    Toxins (Basel); 2014 Apr; 6(4):1308-24. PubMed ID: 24727554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of wheat varieties, fungicides and application time on Fusarium head blight and deoxynivalenol contamination control in wheat.
    Meng D; Dong X; He X; Pan R; Sun M; Chu Y; Tong Z; Yi X; Fan H; Gao T; Duan J
    Pest Manag Sci; 2023 Dec; 79(12):4784-4794. PubMed ID: 37471098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.