These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35640760)

  • 21. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal.
    Bhatta B; Shrestha S; Shrestha PK; Talchabhadel R
    Sci Total Environ; 2020 Oct; 740():140156. PubMed ID: 32563002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin.
    Busico G; Colombani N; Fronzi D; Pellegrini M; Tazioli A; Mastrocicco M
    J Environ Manage; 2020 Jul; 266():110625. PubMed ID: 32392149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison and evaluation of model structures for the simulation of pollution fluxes in a tile-drained river basin.
    Hoang L; van Griensven A; van der Keur P; Refsgaard JC; Troldborg L; Nilsson B; Mynett A
    J Environ Qual; 2014 Jan; 43(1):86-99. PubMed ID: 25602543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.
    Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR
    J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.
    Ficklin DL; Stewart IT; Maurer EP
    PLoS One; 2013; 8(8):e71297. PubMed ID: 23977011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of future hydrologic alteration due to climate change in the Aracthos River basin (NW Greece).
    López-Ballesteros A; Senent-Aparicio J; Martínez C; Pérez-Sánchez J
    Sci Total Environ; 2020 Sep; 733():139299. PubMed ID: 32446069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pasture BMP effectiveness using an HRU-based subarea approach in SWAT.
    Sheshukov AY; Douglas-Mankin KR; Sinnathamby S; Daggupati P
    J Environ Manage; 2016 Jan; 166():276-84. PubMed ID: 26517276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrate loading projection is sensitive to freeze-thaw cycle representation.
    Wang Q; Qi J; Li J; Cole J; Waldhoff ST; Zhang X
    Water Res; 2020 Nov; 186():116355. PubMed ID: 32890809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations.
    Zeiger SJ; Hubbart JA
    J Environ Manage; 2021 May; 285():112125. PubMed ID: 33601266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions.
    Aloui S; Mazzoni A; Elomri A; Aouissi J; Boufekane A; Zghibi A
    J Environ Manage; 2023 Jan; 326(Pt B):116799. PubMed ID: 36413953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of total maximum daily load implementation strategies for nitrate impairment of the Raccoon River, Iowa.
    Manoj K; Wolter CF; Schilling KE; Gassman PW
    J Environ Qual; 2010; 39(4):1317-27. PubMed ID: 20830920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using SWAT to Evaluate Streamflow and Lake Sediment Loading in the Xinjiang River Basin with Limited Data.
    Yuan L; Forshay KJ
    Water (Basel); 2019 Dec; 12(1):39. PubMed ID: 32983578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Projected Streamflow in the Kurau River Basin of Western Malaysia under Future Climate Scenarios.
    Adib MNM; Rowshon MK; Mojid MA; Habibu I
    Sci Rep; 2020 May; 10(1):8336. PubMed ID: 32433561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting phosphorus and nitrate loads by using SWAT model in Vamanapuram River Basin, Kerala, India.
    Saravanan S; Singh L; Sathiyamurthi S; Sivakumar V; Velusamy S; Shanmugamoorthy M
    Environ Monit Assess; 2022 Dec; 195(1):186. PubMed ID: 36482108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan.
    Chiang LC; Liao CJ; Lu CM; Wang YC
    Environ Monit Assess; 2021 Jul; 193(8):520. PubMed ID: 34313852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed.
    Teshager AD; Gassman PW; Secchi S; Schoof JT
    Sci Total Environ; 2017 Dec; 607-608():1188-1200. PubMed ID: 28732398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
    Ren D; Engel B; Mercado JAV; Guo T; Liu Y; Huang G
    Water Res; 2022 Feb; 210():117976. PubMed ID: 34953214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Integrated Agriculture, Atmosphere, and Hydrology Modeling System for Ecosystem Assessments.
    Ran L; Yuan Y; Cooter E; Benson V; Yang D; Pleim J; Wang R; Williams J
    J Adv Model Earth Syst; 2020 Jan; 11(12):4645-4668. PubMed ID: 34122728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.