These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35640834)
41. Relationship of quantitative salivary levels of Streptococcus mutans and S. sobrinus in mothers to caries status and colonization of mutans streptococci in plaque in their 2.5-year-old children. Kishi M; Abe A; Kishi K; Ohara-Nemoto Y; Kimura S; Yonemitsu M Community Dent Oral Epidemiol; 2009 Jun; 37(3):241-9. PubMed ID: 19508271 [TBL] [Abstract][Full Text] [Related]
42. Quantitative assessment of salivary oral bacteria according to the severity of dental caries in childhood. Colombo NH; Kreling PF; Ribas LFF; Pereira JA; Kressirer CA; Klein MI; Tanner ACR; Duque C Arch Oral Biol; 2017 Nov; 83():282-288. PubMed ID: 28858630 [TBL] [Abstract][Full Text] [Related]
44. A preliminary study on the screening of emerging drug resistance among the caries pathogens isolated from carious dentine. Smiline GA; Pandi SK; Hariprasad P; Raguraman R Indian J Dent Res; 2012; 23(1):26-30. PubMed ID: 22842245 [TBL] [Abstract][Full Text] [Related]
45. Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite: an in situ study. Thomas RZ; van der Mei HC; van der Veen MH; de Soet JJ; Huysmans MC Oral Microbiol Immunol; 2008 Feb; 23(1):7-13. PubMed ID: 18173792 [TBL] [Abstract][Full Text] [Related]
46. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children. Fragkou S; Balasouli C; Tsuzukibashi O; Argyropoulou A; Menexes G; Kotsanos N; Kalfas S Eur Arch Paediatr Dent; 2016 Oct; 17(5):367-375. PubMed ID: 27357362 [TBL] [Abstract][Full Text] [Related]
47. Characterization of Lactobacilli isolated from carious dentin after selective caries removal and cavity sealing. Damé-Teixeira N; Ev LD; Bitello-Firmino L; Soares VK; Dalalba RS; Rup AG; Maltz M; Parolo CCF Arch Oral Biol; 2021 Jan; 121():104988. PubMed ID: 33242691 [TBL] [Abstract][Full Text] [Related]
48. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing. Obata J; Takeshita T; Shibata Y; Yamanaka W; Unemori M; Akamine A; Yamashita Y PLoS One; 2014; 9(8):e103712. PubMed ID: 25083880 [TBL] [Abstract][Full Text] [Related]
49. Relationship between laser fluorescence and bacterial invasion in arrested dentinal carious lesions. Iwami Y; Yamamoto H; Hayashi M; Ebisu S Lasers Med Sci; 2011 Jul; 26(4):439-44. PubMed ID: 20535516 [TBL] [Abstract][Full Text] [Related]
50. Comparison of fluorescence parameters between three generations of QLF devices for detecting enamel caries in vitro and on smooth surfaces. Park SW; Kim SK; Lee HS; Lee ES; de Josselin de Jong E; Kim BI Photodiagnosis Photodyn Ther; 2019 Mar; 25():142-147. PubMed ID: 30508664 [TBL] [Abstract][Full Text] [Related]
51. Impact of Streptococcus mutans on the generation of fluorescence from artificially induced enamel and dentin carious lesions in vitro. Shigetani Y; Takenaka S; Okamoto A; Abu-Bakr N; Iwaku M; Okiji T Odontology; 2008 Jul; 96(1):21-5. PubMed ID: 18661200 [TBL] [Abstract][Full Text] [Related]
52. Caries experience and quantification of Streptococcus mutans and Streptococcus sobrinus in saliva of Sudanese schoolchildren. Nurelhuda NM; Al-Haroni M; Trovik TA; Bakken V Caries Res; 2010; 44(4):402-7. PubMed ID: 20714152 [TBL] [Abstract][Full Text] [Related]
53. Sealing of cavitated occlusal carious lesions in the dentine of deciduous molars: a two-year randomised controlled clinical trial. Dos Santos NM; Leal SC; Gouvea DB; Sarti CS; Toniolo J; Neves M; Rodrigues JA Clin Oral Investig; 2022 Jan; 26(1):1017-1024. PubMed ID: 34286398 [TBL] [Abstract][Full Text] [Related]
54. Lactobacilli from the dentin and saliva in children. Nancy J; Dorignac G J Clin Pediatr Dent; 1992; 16(2):107-11. PubMed ID: 1498044 [TBL] [Abstract][Full Text] [Related]
55. Prediction of secondary caries around tooth-colored restorations: a clinical and microbiological study. Kidd EA; Beighton D J Dent Res; 1996 Dec; 75(12):1942-6. PubMed ID: 9033448 [TBL] [Abstract][Full Text] [Related]
56. A quantitative comparison of selected bacteria in human carious dentine by microscopic counts. Ozaki K; Matsuo T; Nakae H; Noiri Y; Yoshiyama M; Ebisu S Caries Res; 1994; 28(3):137-45. PubMed ID: 8033185 [TBL] [Abstract][Full Text] [Related]
57. Clinical, mineral and ultrastructural changes in carious dentin of primary molars after restoration. Chibinski AC; Wambier L; Reis A; Wambier DS Int Dent J; 2016 Jun; 66(3):150-7. PubMed ID: 26846944 [TBL] [Abstract][Full Text] [Related]
58. Relationship between colors of carious dentin and laser fluorescence evaluations in caries diagnosis. Iwami Y; Shimizu A; Hayashi M; Takeshige F; Ebisu S Dent Mater J; 2006 Sep; 25(3):584-90. PubMed ID: 17076331 [TBL] [Abstract][Full Text] [Related]
59. Attenuation of near-ultraviolet, visible and near-infrared light in sound and carious human enamel and dentin. Berghammer K; Litzenburger F; Heck K; Kunzelmann KH Clin Oral Investig; 2022 Sep; 26(9):5847-5855. PubMed ID: 35588022 [TBL] [Abstract][Full Text] [Related]
60. Efficacy of removal of cariogenic bacteria and carious dentin by ablation using different modes of Er:YAG lasers. Baraba A; Kqiku L; Gabrić D; Verzak Ž; Hanscho K; Miletić I Braz J Med Biol Res; 2018 Jan; 51(3):e6872. PubMed ID: 29340524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]