These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35640976)

  • 1. transferGWAS: GWAS of images using deep transfer learning.
    Kirchler M; Konigorski S; Norden M; Meltendorf C; Kloft M; Schurmann C; Lippert C
    Bioinformatics; 2022 Jul; 38(14):3621-3628. PubMed ID: 35640976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence.
    Chen L; Wang Y; Zhao F
    Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GWAlpha: genome-wide estimation of additive effects (alpha) based on trait quantile distribution from pool-sequencing experiments.
    Fournier-Level A; Robin C; Balding DJ
    Bioinformatics; 2017 Apr; 33(8):1246-1247. PubMed ID: 28003266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding associated variants in genome-wide association studies on multiple traits.
    Gai L; Eskin E
    Bioinformatics; 2018 Jul; 34(13):i467-i474. PubMed ID: 29949991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules.
    Yao X; Yan J; Liu K; Kim S; Nho K; Risacher SL; Greene CS; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2017 Oct; 33(20):3250-3257. PubMed ID: 28575147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iGWAS: Image-based genome-wide association of self-supervised deep phenotyping of retina fundus images.
    Xie Z; Zhang T; Kim S; Lu J; Zhang W; Lin CH; Wu MR; Davis A; Channa R; Giancardo L; Chen H; Wang S; Chen R; Zhi D
    PLoS Genet; 2024 May; 20(5):e1011273. PubMed ID: 38728357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Varmole: a biologically drop-connect deep neural network model for prioritizing disease risk variants and genes.
    Nguyen ND; Jin T; Wang D
    Bioinformatics; 2021 Jul; 37(12):1772-1775. PubMed ID: 33031552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G2P: a Genome-Wide-Association-Study simulation tool for genotype simulation, phenotype simulation and power evaluation.
    Tang Y; Liu X
    Bioinformatics; 2019 Oct; 35(19):3852-3854. PubMed ID: 30848784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype.
    Yin B; Balvert M; van der Spek RAA; Dutilh BE; Bohté S; Veldink J; Schönhuth A
    Bioinformatics; 2019 Jul; 35(14):i538-i547. PubMed ID: 31510706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies.
    Yang Y; Shi X; Jiao Y; Huang J; Chen M; Zhou X; Sun L; Lin X; Yang C; Liu J
    Bioinformatics; 2020 Apr; 36(7):2009-2016. PubMed ID: 31755899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of disease-associated loci using machine learning for genotype and network data integration.
    Leal LG; David A; Jarvelin MR; Sebert S; Männikkö M; Karhunen V; Seaby E; Hoggart C; Sternberg MJE
    Bioinformatics; 2019 Dec; 35(24):5182-5190. PubMed ID: 31070705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust genetic model-based SNP-set association test using CauchyGM.
    Kim Y; Chi YY; Shen J; Zou F
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated machine learning for genome wide association studies.
    Lakiotaki K; Papadovasilakis Z; Lagani V; Fafalios S; Charonyktakis P; Tsagris M; Tsamardinos I
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37672022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network.
    Xu C; Liu Q; Zhou J; Xie M; Feng J; Jiang T
    Bioinformatics; 2020 Mar; 36(5):1397-1404. PubMed ID: 31693090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ColocML: machine learning quantifies co-localization between mass spectrometry images.
    Ovchinnikova K; Stuart L; Rakhlin A; Nikolenko S; Alexandrov T
    Bioinformatics; 2020 May; 36(10):3215-3224. PubMed ID: 32049317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic surrogates improve power for genome-wide association studies of partially missing phenotypes in population biobanks.
    McCaw ZR; Gao J; Lin X; Gronsbell J
    Nat Genet; 2024 Jul; 56(7):1527-1536. PubMed ID: 38872030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.
    Zhuang Z; Shen X; Pan W
    Bioinformatics; 2019 Sep; 35(17):2899-2906. PubMed ID: 30649185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.