These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35641068)

  • 1. Decoding finger movement patterns from microscopic neural drive information based on deep learning.
    Zhao Y; Zhang X; Li X; Zhao H; Chen X; Chen X; Gao X
    Med Eng Phys; 2022 Jun; 104():103797. PubMed ID: 35641068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Encoder-Decoder Deep Networks for Decoding Neural Drive Information towards Precise Muscle Force Estimation.
    Tang X; Chen M; Chen X; Chen X; Zhang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():176-179. PubMed ID: 33017958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Spatial Activation Patterns of Motor Units in Finger Extensor Muscles.
    Jiang X; Ren H; Xu K; Ye X; Dai C; Clancy EA; Zhang YT; Chen W
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):647-655. PubMed ID: 32750937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised neural decoding for concurrent and continuous multi-finger force prediction.
    Meng L; Hu X
    Comput Biol Med; 2024 May; 173():108384. PubMed ID: 38554657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online Decomposition of Surface Electromyogram Into Individual Motor Unit Activities Using Progressive FastICA Peel-Off.
    Zhao H; Zhang X; Chen M; Zhou P
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):160-170. PubMed ID: 37432836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting and Classifying Spatial Muscle Activation Patterns in Forearm Flexor Muscles Using High-Density Electromyogram Recordings.
    Dai C; Hu X
    Int J Neural Syst; 2019 Feb; 29(1):1850025. PubMed ID: 29954235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Finger Motion Classification Model Based on Motor Unit Voting.
    Liu X; Zhou M; Dai C; Chen W; Ye X
    Motor Control; 2020 Nov; 25(1):100-116. PubMed ID: 33207316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proportional estimation of finger movements from high-density surface electromyography.
    Celadon N; Došen S; Binder I; Ariano P; Farina D
    J Neuroeng Rehabil; 2016 Aug; 13(1):73. PubMed ID: 27488270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle Force Estimation Based on Neural Drive Information From Individual Motor Units.
    Zhang X; Zhu G; Chen M; Chen X; Chen X; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3148-3157. PubMed ID: 33284755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Density Surface EMG Decomposition by Combining Iterative Convolution Kernel Compensation With an Energy-Specific Peel-off Strategy.
    Zheng Y; Ma Y; Liu Y; Houston M; Guo C; Lian Q; Li S; Zhou P; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3641-3651. PubMed ID: 37656648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Source Validation of Progressive FastICA Peel-Off for Automatic Surface EMG Decomposition in Human First Dorsal Interosseous Muscle.
    Chen M; Zhang X; Lu Z; Li X; Zhou P
    Int J Neural Syst; 2018 Nov; 28(9):1850019. PubMed ID: 29909721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved High-Density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural Network.
    Wu L; Zhang X; Wang K; Chen X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2637-2646. PubMed ID: 33052847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding Muscle Force From Motor Unit Firings Using Encoder-Decoder Networks.
    Tang X; Zhang X; Chen M; Chen X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2484-2495. PubMed ID: 34748497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust neural decoding for dexterous control of robotic hand kinematics.
    Fan J; Vargas L; Kamper DG; Hu X
    Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online prediction of sustained muscle force from individual motor unit activities using adaptive surface EMG decomposition.
    Zhao H; Sun Y; Wei C; Xia Y; Zhou P; Zhang X
    J Neuroeng Rehabil; 2024 Apr; 21(1):47. PubMed ID: 38575926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finger Movement Recognition via High-Density Electromyography of Intrinsic and Extrinsic Hand Muscles.
    Hu X; Song A; Wang J; Zeng H; Wei W
    Sci Data; 2022 Jun; 9(1):373. PubMed ID: 35768439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel energy-motion model for continuous sEMG decoding: from muscle energy to motor pattern.
    Liu G; Wang L; Wang J
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33022663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.
    Arjunan SP; Kumar DK
    J Neuroeng Rehabil; 2010 Oct; 7():53. PubMed ID: 20964863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time isometric finger extension force estimation based on motor unit discharge information.
    Zheng Y; Hu X
    J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Density Surface Electromyogram-based Biometrics for Personal Identification.
    Jiang X; Xu K; Liu X; Liu D; Dai C; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():728-731. PubMed ID: 33018090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.