These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35641150)

  • 1. Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs.
    Sen N; Anishchenko I; Bordin N; Sillitoe I; Velankar S; Baker D; Orengo C
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors.
    Lee C; Su BH; Tseng YJ
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated approach to the interpretation of single amino acid polymorphisms within the framework of CATH and Gene3D.
    Izarzugaza JM; Baresic A; McMillan LE; Yeats C; Clegg AB; Orengo CA; Martin AC; Valencia A
    BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S5. PubMed ID: 19758469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obtaining protein foldability information from computational models of AlphaFold2 and RoseTTAFold.
    Liu S; Wu K; Chen C
    Comput Struct Biotechnol J; 2022; 20():4481-4489. PubMed ID: 36051869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GTExome: Modeling commonly expressed missense mutations in the human genome.
    Hoffman J; Tan H; Sandoval-Cooper C; de Villiers K; Reed SM
    PLoS One; 2024; 19(5):e0303604. PubMed ID: 38814966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using AlphaFold to predict the impact of single mutations on protein stability and function.
    Pak MA; Markhieva KA; Novikova MS; Petrov DS; Vorobyev IS; Maksimova ES; Kondrashov FA; Ivankov DN
    PLoS One; 2023; 18(3):e0282689. PubMed ID: 36928239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computed cancer interactome explains the effects of somatic mutations in cancers.
    Zhang J; Pei J; Durham J; Bos T; Cong Q
    Protein Sci; 2022 Dec; 31(12):e4479. PubMed ID: 36261849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models.
    Varadi M; Anyango S; Deshpande M; Nair S; Natassia C; Yordanova G; Yuan D; Stroe O; Wood G; Laydon A; Žídek A; Green T; Tunyasuvunakool K; Petersen S; Jumper J; Clancy E; Green R; Vora A; Lutfi M; Figurnov M; Cowie A; Hobbs N; Kohli P; Kleywegt G; Birney E; Hassabis D; Velankar S
    Nucleic Acids Res; 2022 Jan; 50(D1):D439-D444. PubMed ID: 34791371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural effects of point mutations in proteins.
    Shanthirabalan S; Chomilier J; Carpentier M
    Proteins; 2018 Aug; 86(8):853-867. PubMed ID: 29569365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The X-ray crystallography phase problem solved thanks to AlphaFold and RoseTTAFold models: a case-study report.
    Barbarin-Bocahu I; Graille M
    Acta Crystallogr D Struct Biol; 2022 Apr; 78(Pt 4):517-531. PubMed ID: 35362474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disease risk of missense mutations using structural inference from predicted function.
    Horst JA; Wang K; Horst OV; Cunningham ML; Samudrala R
    Curr Protein Pept Sci; 2010 Nov; 11(7):573-88. PubMed ID: 20887259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural coverage of the human proteome before and after AlphaFold.
    Porta-Pardo E; Ruiz-Serra V; Valentini S; Valencia A
    PLoS Comput Biol; 2022 Jan; 18(1):e1009818. PubMed ID: 35073311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DPAM: A domain parser for AlphaFold models.
    Zhang J; Schaeffer RD; Durham J; Cong Q; Grishin NV
    Protein Sci; 2023 Feb; 32(2):e4548. PubMed ID: 36539305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding disease-causing mechanisms of missense mutations from supramolecular structures.
    Hijikata A; Tsuji T; Shionyu M; Shirai T
    Sci Rep; 2017 Aug; 7(1):8541. PubMed ID: 28819267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensated pathogenic deviations: analysis of structural effects.
    Baresić A; Hopcroft LE; Rogers HH; Hurst JM; Martin AC
    J Mol Biol; 2010 Feb; 396(1):19-30. PubMed ID: 19900462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR Structures.
    Tejero R; Huang YJ; Ramelot TA; Montelione GT
    Front Mol Biosci; 2022; 9():877000. PubMed ID: 35769913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses.
    Medina-Carmona E; Betancor-Fernández I; Santos J; Mesa-Torres N; Grottelli S; Batlle C; Naganathan AN; Oppici E; Cellini B; Ventura S; Salido E; Pey AL
    Hum Mol Genet; 2019 Jan; 28(1):1-15. PubMed ID: 30215702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into Disease-Associated Mutations in the Human Proteome through Protein Structural Analysis.
    Gao M; Zhou H; Skolnick J
    Structure; 2015 Jul; 23(7):1362-9. PubMed ID: 26027735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential performance of RoseTTAFold in antibody modeling.
    Liang T; Jiang C; Yuan J; Othman Y; Xie XQ; Feng Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35598325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.