BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35641587)

  • 1. Deconvolution improves the detection and quantification of spike transmission gain from spike trains.
    Spivak L; Levi A; Sloin HE; Someck S; Stark E
    Commun Biol; 2022 May; 5(1):520. PubMed ID: 35641587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of Bayesian methods for neural spike train analysis.
    Chen Z
    Comput Intell Neurosci; 2013; 2013():251905. PubMed ID: 24348527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in silico model for determining the influence of neuronal co-activity on rodent spatial behavior.
    Srinivasan A; Srinivasan A; Riceberg JS; Goodman MR; Guise KG; Shapiro ML
    J Neurosci Methods; 2022 Jul; 377():109627. PubMed ID: 35609789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing nonlinear misalignment in neuronal spike trains using the Fisher-Rao registration framework.
    Xu Z; Zhou X; Xu Y; Wu W
    J Neurosci Methods; 2022 Feb; 367():109436. PubMed ID: 34890697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical technique for analysing functional connectivity of multiple spike trains.
    Masud MS; Borisyuk R
    J Neurosci Methods; 2011 Mar; 196(1):201-19. PubMed ID: 21236298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks.
    Cotterill E; Charlesworth P; Thomas CW; Paulsen O; Eglen SJ
    J Neurophysiol; 2016 Aug; 116(2):306-21. PubMed ID: 27098024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating summary statistics in the spike-train space.
    Wu W; Srivastava A
    J Comput Neurosci; 2013 Jun; 34(3):391-410. PubMed ID: 23053864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of neuronal correlations on filter characteristics and marginal spike train statistics.
    Tetzlaff T; Rotter S; Stark E; Abeles M; Aertsen A; Diesmann M
    Neural Comput; 2008 Sep; 20(9):2133-84. PubMed ID: 18439140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing neuronal circuitry from parallel spike trains.
    Kobayashi R; Kurita S; Kurth A; Kitano K; Mizuseki K; Diesmann M; Richmond BJ; Shinomoto S
    Nat Commun; 2019 Oct; 10(1):4468. PubMed ID: 31578320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical properties of superimposed stationary spike trains.
    Deger M; Helias M; Boucsein C; Rotter S
    J Comput Neurosci; 2012 Jun; 32(3):443-63. PubMed ID: 21964584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying bursting neuron activity from calcium signals using blind deconvolution.
    Park IJ; Bobkov YV; Ache BW; Principe JC
    J Neurosci Methods; 2013 Sep; 218(2):196-205. PubMed ID: 23711821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data.
    Shimazaki H; Amari S; Brown EN; Grün S
    PLoS Comput Biol; 2012; 8(3):e1002385. PubMed ID: 22412358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.
    Barbieri R; Quirk MC; Frank LM; Wilson MA; Brown EN
    J Neurosci Methods; 2001 Jan; 105(1):25-37. PubMed ID: 11166363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding the event structure of neuronal spike trains.
    Toups JV; Fellous JM; Thomas PJ; Sejnowski TJ; Tiesinga PH
    Neural Comput; 2011 Sep; 23(9):2169-208. PubMed ID: 21671786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale analysis of neural spike trains.
    Ramezan R; Marriott P; Chenouri S
    Stat Med; 2014 Jan; 33(2):238-56. PubMed ID: 23996238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains.
    Ostojic S; Brunel N; Hakim V
    J Neurosci; 2009 Aug; 29(33):10234-53. PubMed ID: 19692598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mathematical model of bursting spike train and its spectrum features].
    Zhang D; Ding H; Ye D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1353-9. PubMed ID: 21374994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.